PANDIT SUNDARLAL SHARMA (OPEN) UNIVERSITY CHHATTISGARH BILASPUR

LABORATORY MANUAL

Bachelor of Science

Chemistry

(B.Sc. Ist Year)

Department of Chemistry

PANDIT SUNDARLAL SHARMA (OPEN) UNIVERSITY CHHATTISGARH, BILASPUR VERIFIED

Incharge NAAC Criteria-I

LABORATORY MANUAL

Chemistry (BSc First Year)

CONTENTS

SECTION - A: INORGANIC CHEMISTRY

1. Determine the number of molecules of water of crystallisation in ferrous ammonium sulphate $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \mathrm{XH}_{2} \mathrm{O}, 20 \mathrm{gm}$ of which have been dissolved per litre Provided app. $\frac{N}{20} \mathrm{KMnO}_{4}$ solution
2. Given solution was prepared by dissolving 4 g of ferrous oxalate in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and volume made to one litre. Determine volumetrically.
(i) $\%$ purity of the sample.
(ii) \% of oxalate ions in the sample.

Provided app. $\frac{N}{20} \mathrm{KMnO}_{4}$ solution.
3. Determine the percentage purity of given sample of Mohr's salt, 20 gm of which are present per litre of solution. Provided solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
4. To evaluate the value of x in $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, provided $\frac{N}{20}$ hypo solution.
5. To Determine the percentage purity of the given sample of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and also determine the percentage of magnesium in it. Provided $\frac{N}{20}$ EDTA solution.
6. To determine the strength of Zn^{2+} ion per litre in the given solution of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, provided $\frac{N}{20}$ EDTA solution.
7. To separate or identify the constituents present in an inorganic mixture containing $\mathrm{Pb}^{2+}, \mathrm{CU}^{2+}$ and Cd^{2+} by paper chromatography
8. Identify the inorganic anions $\mathrm{CI}^{-}, \mathrm{Br}^{-}$and I^{-}by paper chromatography.

SECTION - B: PHYSICAL CHEMISTRY

9. To determine the specific reaction rate of the hydrolysis of ethyl acetate (or methyl acetate) catalyzed by hydrogen ions at room temperature.
10. To prepare a colloidal solution of arsenious sulphide.
11. Determine the surface tension of a given liquid at room temp using stalagmometer by drop number method.
12. To determine the viscosity of the given liquid.
13. To determine the specific refractivity of a given liquid.

SECTION - C: ORGANIC CHEMISTRY

14. To determine the melting point of organic compound.
15. To determine boiling point of organic compound.
16. To Prepare pure sample of Iodoform.
17. To prepare a sample of m-Dinitrobenzene from nitrobenzene.
18. To prepare a pure sample of Dibenzal acetone.
19. To prepare a sample of 2,4-Dinitrophenyl derivative of Acetophenone.
20. To Prepare a sample of p-Bromoacetanilide from acetanilide.
21. To purify a given sample of phthalic acid by sublimation.
22. To purify a given sample of camphor by sublimation.

EXPERIMENT - 1

AIM:- Determine the number of molecules of water of crystallisation in ferrous ammonium sulphate $\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} . \mathrm{xH}_{2} \mathrm{O}, 20 \mathrm{gm}$ of which have been dissolved per litre Provided app. $\frac{N}{20} \mathrm{KMnO}_{4}$ solution.

APPARATUS REQUIRED:-

Burette, conical flask, dropper, glass rod

CHEMICAL REQUIRED:-

FeSO 4_{4} solution, KMnO_{4}, mohr's salt

THEORY:-

Standardise KMnO_{4} solution by titrating against $\frac{N}{20} \mathrm{FeSO}_{4}$ solution, then ferrous ammonium sulphate is titrated against the standard KMnO_{4} solution the calculate the value of x

Chemical equation:

$$
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \quad \rightarrow \quad \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5(\mathrm{O})
$$

$$
\begin{gathered}
{\left[2 \mathrm{FeSO}_{4} \cdot\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right]+\mathrm{H}_{2} \mathrm{SO}_{4}+(\mathrm{O}) \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+2\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+} \\
\left.13 \mathrm{H}_{2} \mathrm{O}\right] \times 5
\end{gathered}
$$

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}+10 \mathrm{FeSO}_{4 .}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}+8 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \quad \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+5 \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+ \\
10\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+68 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

First titration:- FeSO_{4} against KMnO_{4}
Indicator:- KMnO_{4} acts as a self indicator
End point:- Appearance of light pink colour

PROCEDURE:-

(i) Rins and fill the burette with KMnO_{4} solution.
(ii) Pipette out 20 ml of FeSO_{4} solution into a conical flask and then egg one test tube of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(iii) Then add KMnO_{4} solution dropwise with shaking.
(iv) At the end point light pink colour just appears.
(v) Repeat the titration to get a set of three concordant readings.

OBSERVATION:-

Volume of $\frac{N}{20} \mathrm{FeSO}_{4}$ taken each time $=20 \mathrm{ml}$

S.No.	Initial reading	Final reading	Vol. Of KMnO 4 solution in ml
1.
2.
3.		...	
4.	

\square
Concordante volume $=\mathrm{V} \mathrm{ml}$
$\mathbf{2}^{\text {nd }}$ Titration :- Ferrous ammonium sulphate against KMnO_{4}
Indicator:- KMnO_{4} acts as a self indicator
End point:- Appearance of light pink colour

PROCEDURE:-

(i) Rins and fill the burette with KMnO_{4} solution.
(ii) Pipette out 20 ml of Ferrous ammonium sulphate solution into a conical flask and then egg one test tube of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(iii) Then add KMnO_{4} solution dropwise with shaking.
(iv) At the end point light pink colour just appears.
(v) Repeat the titration to get a set of three concordant readings.

OBSERVATION:-

S.No.	Initial reading	Final reading	Vol. Of KMnO 4 solution in ml
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$			

Concordant volume $=\mathrm{X} \mathrm{ml}$

Calculations:-

Ist titration:- Using normality equation

$$
\begin{gathered}
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \\
\left(\mathrm{FeSO}_{4} \text { solution }\right) \quad\left(\mathrm{KMnO}_{4} \text { solution }\right) \\
\frac{N}{20} \times 20=\mathrm{N}_{2} \times \mathrm{V} \\
\mathrm{~N}_{2} \text {, i.e., normality of } \mathrm{KMnO}_{4} \text { solution }=\frac{N}{20} \times \frac{20}{V}=\frac{N}{V}
\end{gathered}
$$

$\mathbf{2}^{\text {nd }}$ titration:- Again using normality equation

$$
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}
$$

(Ferrous ammonium sulphate solution) (KMnO_{4} solution)

$$
\mathrm{N}_{1} \times 20=\frac{N}{V} \times \mathrm{X}
$$

$\therefore \mathrm{N}_{1}$, i.e., normality of ferrous ammonium sulphate $=\frac{N}{V} \times \frac{X}{20}$
\therefore Strength of anhydrous ferrous ammonium sulphate $=$ Normality \times Eq.wt.
$=\mathrm{N}_{1} \times 284$
(\therefore eq. wt. Of anhydrous salt is 284)
Now using the relation

$$
\begin{gathered}
\frac{\text { Mol.wt.of } \mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right) 2 \mathrm{SO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}}{\text { Mol.wt.of } \mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}
\end{gathered}=\frac{\text { Strengt } h \text { of hydrous salt }}{\text { Strengt } h \text { of an hydrous salt }}
$$

From above relation, the value of x can be calculated.

PRECAUTIONS:-

(i) The apparatus should be cleaned and dried.
(ii) Always place the KMnO_{4} solution in the burette and read the upper surface of its meniscus as the lower one is not clearly visible.
(iii) And about 20 ml of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a solution before titrating with KMnO_{4} because of less amount is added then a brown ppt. Of hydrated MnO_{2} is formed.
(iv) Never run large amount of KMnO_{4} solution at a time otherwise a brown ppt. Of hydrated MnO_{2} is formed

RESULT:-

Ferrous ammonium sulphate crystals have _ _ molecules of water of crystallisation.

EXPERIMENT - 2

AIM:- Given solution was prepared by dissolving 4 g of ferrous oxalate in dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and volume made to one litre. Determine volumetrically.
(iii) \% purity of the sample.
(iv) $\%$ of oxalate ions in the sample.

Provided app. $\frac{N}{20} \mathrm{KMnO}_{4}$ solution.

APPARATUS REQUIRED:-

Burette, conical flask, dropper, glass rod

CHEMICAL REQUIRED:-

FeSO_{4}, ferrous oxalate, $\mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{KMnO}_{4}$

THEORY:-

Standardises KMnO_{4} solution by titrating it against $\frac{N}{20} \mathrm{FeSO}_{4}$ solution and then determined normality of ferrous oxalate by titrating it against KMnO_{4} solution. Then $\%$ purity of the sample and $\%$ of oxalate ions can be calculated. Using normality equation

CHEMICAL EQUATIONS:-

$$
\begin{gathered}
2 \mathrm{KMnO}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+2 \mathrm{MnSO}_{4}+3 \mathrm{H}_{2} \mathrm{O}+5[\mathrm{O}] \\
2 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O} \rightarrow \mathrm{Fe}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O} \\
3 \mathrm{FeC}_{2} \mathrm{O}_{4}+3 \mathrm{H}_{2} \mathrm{SO}_{4}+3[\mathrm{O}] \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Ist titration: FeSO_{4} against KMnO_{4}
Indicator : KMnO_{4} acts as a self - indicator
End point: Just appearance of permanent light pink colour.

PROCEDURE:-

(i) Rins and fill the burette with KMnO_{4} solution.
(ii) Pipette out 20 ml of FeSO_{4} solution into a conical flask and then egg one test tube of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$.
(iii) Then add KMnO_{4} solution dropwise with shaking.
(iv) At the end point light pink colour just appears.
(v) Repeat the titration to get a set of three concordant readings.

OBSERVATION:-

Volume of $\frac{N}{20} \mathrm{FeSO}_{4}$ taken each time $=20 \mathrm{ml}$

S.No.	Initial reading	Final reading	Vol. Of KMnO_{4} solution in ml
1.
2.
3.
4.

Concordant volume $=\mathrm{V}$ ml
$\mathbf{2}^{\text {nd }}$ titration: Ferrous oxalate against KMnO_{4}
Indicator : KMnO_{4} acts as a self - indicator
End point: Just appearance of permanent light pink colour.

PROCEDURE:-

(i) Rins and fill the burette with KMnO_{4} solution.
(ii) Pipette out 20 ml Ferrous oxalate solution into a conical flask and then egg one test tube dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
(iii) Heat the above solution on a wire gauze to $60-70^{\circ} \mathrm{C}$.
(iv) Then add KMnO_{4} solution dropwise with shaking.
(v) At the end point light pink colour just appears.
(vi) Repeat the titration to get a set of three concordant readings.

OBSERVATION:-

Volume of Ferrous oxalate taken each time $=20 \mathrm{ml}$

S.No.	Initial reading	Final reading	Vol. Of KMnO_{4} solution in ml
1.	\ldots	\ldots
2.
3.	\cdots	\ldots
4.	\ldots

$$
\text { Concordant volume }=\mathrm{X} \text { ml }
$$

CACLCULATIONS:-

$1^{\text {st }}$ titration:

Using normality equation

$$
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}
$$

(FeSO_{4} solution) $\left(\mathrm{KMnO}_{4}\right.$ solution)

$$
\frac{N}{20} \times 20=\mathrm{N}_{2} \times \mathrm{V}
$$

N_{1},i.e., normality of KMnO_{4} solution $=\frac{N}{20} \times \frac{20}{V} \times \frac{N}{V}$
$2^{\text {nd }}$ titration:
Again using normality equation

$$
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}
$$

(Ferrous oxalate solution) (KMnO_{4} solution)

$$
\mathrm{N}_{1} \times 20=\frac{N}{V} \times \mathrm{X}
$$

N_{1}, i.e., normality of ferrous oxalate. $=\frac{N}{V} \times \frac{X}{20}$
\therefore Strength of pure ferrous oxalate $=$ Normality \times Eq.wt.

$$
=\frac{N}{V} \times \frac{X}{20} \times 60=\mathrm{x} \text { g/litre (say) }
$$

$$
(\therefore \text { eq. Wt. Of ferrous oxalate }=60)
$$

Weight of impure sample $=4 \mathrm{~g} / \mathrm{litre}$
$\therefore \%$ purity of ferrous oxalate sample $=\frac{X}{4} \times 100=25 \mathrm{x}$
Further amount of oxalate ions $=$ Normality $\times \mathrm{eq}$. Wt.

$$
=\frac{N}{V} \times \frac{X}{20} \times 44=\text { z/litre (say) }
$$

(\therefore eq. Wt. Of oxalate ions, $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}=\frac{88}{2}=44$)
$\therefore \%$ of oxalate ions in the smaple $=\frac{Y}{4} \times 100=\mathrm{a}$ (say)

RESULT:-

i. $\%$ purity of sample 25 y
ii. $\quad \%$ of oxalate ions in the sample $=\mathrm{a}$

EXPERIMENT - 3

AIM:- Determine the percentage purity of given sample of Mohr's salt, 20 gm of which are present per litre of solution. Provided solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.

APPARATUS REQUIRED:-

Burette, beaker, conical flask, glass rod

CHEMICAL REQUIRED:-

Mohr's salt, $\mathrm{KgCr}_{2} \mathrm{O}_{7}$, N -phenyl-anthracitic acid

CHEMICAL EQUATIONS:-

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}] \\
\mathrm{FeSO}_{4}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O} \xrightarrow{\text { aq. }} \mathrm{FeSO}_{4}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}+6 \mathrm{H}_{2} \mathrm{O} \\
2 \mathrm{FeSO}_{4}+\mathrm{H}_{2} \mathrm{SO}_{4}+\mathrm{O} \rightarrow \mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}+\mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

Indicator: N-phenyl anthranilic acid.
End point: Green to violet red.

Titration of mohr's salt against $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$

PROCEDURE:-

i. Rins and fill the burette with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution.
ii. Pipette out 20 ml of mohr's salt solution. Into titration flask and add about 100 ml of $2 \mathrm{NH}_{2} \mathrm{SO}_{4}$.
iii. Add 5-10 drops of N -phenyl anthranilic acid.
iv. Add $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution dropwise till the colour changes from green to violet wet.
v. Repeat the titration to get a set of three cordant readings.

OBSERVATIONS:-

Weight of empty watch galss $=\mathrm{wg}$.
Weight of watch glass + solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=(\mathrm{w}+0.6125) \mathrm{g}$
$\therefore \quad$ Weight of solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}=0.6125 \mathrm{~g}$
Volume of solution made $=250 \mathrm{ml}$
$\therefore \quad$ Normality of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7 \text { solution }}=\frac{\text { Strengt } h}{E q . w t .}=\frac{0.6125}{49}=\frac{1}{20}$

Volume of Mohr's salt solution taken each time $=20 \mathrm{ml}$

S.No.	Initial reading	Final reading	Vol. Of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution in ml
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$			

Concordant volume $=\mathrm{V} \mathrm{ml}$

CALCULATIONS:-

Using normality equation

$$
\begin{gathered}
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \\
\text { (Mohr's salt) }\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right. \text { solution) } \\
\mathrm{N}_{1} \times 20=\frac{N}{20} \times \mathrm{V}
\end{gathered}
$$

N_{1}, i.e., normality of Mohr's salt solution $=\frac{V}{400}$
$\therefore \quad$ Strength of Mohr' salt solution $=$ Normality \times Eq. Wt.

$$
=\frac{V}{400} \times 392=\mathrm{x} \mathrm{~g} / \text { litre }(\text { say })
$$

$\therefore \quad$ percentage purity of Mohr's salt $=\frac{x}{20} \times 100$

RESULT:-

\% purity of Mohr's salt $=\frac{x}{20} \times 100$

PRECAUTIONS:-

i. Burette should be rinsed with $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution before filling in the solution. Titration flask should be washed with distilled water after each titration.
ii. $\quad \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is always to be taken in the burette and its upper meniscus is to be considered while nothing the initial and final readings.

EXPERIMENT - 4

AIM:- To evaluate the value of x in $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$, provided $\frac{N}{20}$ hypo solution.

APPARATUS REQUIRED:-

Burette, conical flask,. Beaker, glass rod

CHEMICAL REQUIRED:-

$\mathrm{No}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, KI, starch solution

THEORY:-

Cupric ions can be determined iodometrically. The cupric salt solution is treated with an excess of pot. Iodide. The I_{2} thus liberated is titrated with a standard solution of hypo using starch solution as indicator. The value of x can be calculated by suing the following relation.

Theoretical mol. Wt. Of $\mathrm{CuSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}=$ Observed mol. Wt.

$$
\begin{gathered}
159.5+18 \mathrm{x}=\text { Observed mol. Wt. } \\
\mathrm{X}=\frac{\text { Observed mol } . \mathrm{wt} .-159.5}{18}
\end{gathered}
$$

CHEMICAL EQUATIONS: -

$$
\begin{gathered}
2 \mathrm{CuSO}_{4}+4 \mathrm{KI} \rightarrow \mathrm{Cu}_{2} \mathrm{I}_{2}+2 \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{I}_{2} \\
2 \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}+\mathrm{I}_{2} \rightarrow \mathrm{Na}_{2} \mathrm{~S}_{4} \mathrm{O}_{6}+2 \mathrm{NaI}
\end{gathered}
$$

Indicator: Freshly prepared starch solution.
End point: Blue to colourless with white ppt. (Hypo in burette)

PROCEDURE:-

A. Preparation of $\mathrm{CuSO}_{4} \cdot \mathrm{XH}_{2} \mathrm{O}$ solution

i. Weight accurately 3.35 g of given $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ crystals.
ii. Dissolve them in 50 ml of distilled water in a beaker.
iii. Transfer this into 250 ml graduated flask and make the volume to the etched mark by adding more of distilled water.
iv. Stopper and shake the contents thoroughly.

B. Titration of $\mathrm{CuSO}_{4} \cdot \mathbf{x H}_{2} \mathrm{O}$ solution against hypo

i. Rinse and fill the burette with hypo solution.
ii. Pipette out 20 ml of copper sulphate solution into the titration flask and add to it a few drops of dilute solution of sodium carbonate
until a slight turbidity is obtained. Add dil. Acetic acid dropwise until the turbidity disappears.
iii. Add about one gram of solid KI and dilute the solution with about 40 ml of distilled water.
iv. Titrate the displaced I_{2} with hypo solution run from the burette.
v. Add 2 ml freshly prepared starch solution towards the end.
vi. At the end point, the blue colour sharply changes into a white ppt. Of $\mathrm{Cu}_{2} \mathrm{I}_{2}$.
vii. Repeat the titration to get a set of three concordant readings.

OBSERVATIONS:-

Weight of empty watch glass $=\mathrm{w} \mathrm{g}$
Weight of watch glass + copper sulphate $=(w+3.35) \mathrm{g}$
$\therefore \quad$ weight of copper sulphate crystals $=3.350 \mathrm{~g}$
Volume of solution made $=250 \mathrm{ml}$
$\therefore \quad$ Weight of hydrated copper sulphate/litre $=\frac{3.350}{250} \times 1000=13.40 \mathrm{~g}$
Volume of copper sulphate solution taken each time $=20 \mathrm{ml}$

S.No.	Initial reading	Final reading	Vol. Of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution in ml
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$			

Concordant volume $=\mathrm{V} \mathrm{ml}$

CALCULATION:-

Using normality equation

$$
\begin{gathered}
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \\
\left(\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}\right) \quad(\text { Hypo }) \\
\mathrm{N}_{1} \times 20=\frac{N}{20} \times \mathrm{V}
\end{gathered}
$$

N_{1}, i.e., normality of copper sulphate solution $=\frac{V}{400}$

$$
\begin{aligned}
\therefore \quad \text { Eq. Wt. Of copper sulphate } & =\frac{\text { Strengt } h}{\text { Normality }} \\
=\frac{13.40}{V} \times 400 & =\mathrm{E}(\text { say })
\end{aligned}
$$

As eq. Wt. Of $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}=\mathrm{Mol}$. Wt. Of $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$
$\therefore \quad$ Mol. Wt. Of $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}=\mathrm{E}$
Theoretical mol. Wt. = Observed mol. Wt.

Or

$$
\begin{array}{lr}
& 159.5+18 \mathrm{x}=\mathrm{E} \\
\therefore & \mathrm{x}=\frac{E-159.5}{18}
\end{array}
$$

The value of x is to be changed into the nearest whole number since the water molecules can never be in fractions.

PRECAUTIONS:-

i. The indicator should be freshly prepared since on keeping, it is spoiled on account of bacterial attack.
ii. When I_{2} is liberated in the titration flask, the indicator must be added towards the end when the liquid becomes lemon yellow. If the indicator is added in the beginning, it will result into a permanent deep blue colour.

RESULT:-

The value of x in $\mathrm{CuSO}_{4} \cdot \mathrm{xH}_{2} \mathrm{O}$ is five

EXPERIMENT -5

AIM:- To Determine the percentage purity of the given sample of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ and also determine the percentage of magnesium in it. Provided $\frac{N}{20}$ EDTA solution.

APPARATUS REQUIRED:-

Burette, watch glass, pipette, titrating flask, beaker
CHEMICAL REQUIRED:-
i. $\quad \frac{N}{20}$ Solution of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
ii. $\quad \frac{N}{20}$ EDTA (Ethylene diamine tetra-acetic acid)
iii. Eriochrome black T indicator

THEORY:-

It is used to measure the $\%$ purity and $\%$ of Mg . for it take approximately $\frac{N}{20}$ solution of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ is prepared by weighing 1.54 g and dissolving in 250 ml distilled water then it is titrated against $\frac{N}{20}$ solution of EDTA using Eriochrome black T indicator.

CHEMICAL REACTION:-

$$
\mathrm{Mg}^{2+}+\mathrm{Na}_{2}\left(\mathrm{H}_{2} \mathrm{EDTA} \rightarrow(\mathrm{Mg} \text { EDTA })_{2}+2 \mathrm{Na}^{+}+2 \mathrm{H}^{+}\right.
$$

PROCEDURE:-

1. Preparation of approximately $\frac{N}{20} \quad \mathbf{M g S O}_{4} \cdot \mathbf{7} \mathbf{H}_{2} \mathrm{O}$

i. Firstly weigh out 1.54 g of $\mathrm{MgSO}_{4} 7 \mathrm{H} 2 \mathrm{O}$ accurately on a watch glass. Transfer it into 250 ml beaker and add about 50 ml of distilled water.
ii. Dissolve the solid by stirring.
iii. Now transfer the solution into a 250 ml graduated flask.
iv. Wash out the beaker and make up the volume by dilution with distilled water to the etched mark.
2. Titration of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{\mathbf{2}} \mathrm{O}$ solution against $\frac{\mathrm{N}}{\mathbf{2 0}}$ EDTA.
i. Rinse and fill the burette with $\frac{N}{20}$ EDTA solution.
ii. Now pipette out 20 ml of prepared $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution into a titration flask.
iii. Add about 2 ml of buffer solution, 30 ml of distilled water and 2-3 drops of eriochrome black T indicator.
iv. Now run the EDTA solution from the burette into the flask dropwise with constant shaking.
v. Go on adding the EDTA solution till the colour changes from red to sky blue.
vi. Repeat the titration to get a set of 3 constant reading.

OBSERVATION:-

Weight of empty watch glass $=\mathrm{w} \mathrm{g}$
Weight of watch glass $+\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=(\mathrm{w}+1.5375) \mathrm{g}$
$\therefore \quad$ Weight of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=1.5375 \mathrm{~g}$
Volume of solution made $=250 \mathrm{ml}$
Volume of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution taken each time $=20 \mathrm{ml}$

S.No.	Initial reading of burette	Final reading of burette	Vol. of EDTA solution used in ml.
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$			

Concordant volume $=$ Vml (say)

CALCULATIONS:-

Using normality equation

$$
\begin{gathered}
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2} \\
\left(\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O} \quad \text { solution }\right) \quad(\text { EDTA solution })
\end{gathered}
$$

N_{1}, i.e., normality of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution $=\frac{N_{2} V_{2}}{V_{1}}$

$$
=\frac{N}{20} \times \frac{V}{20} \times \frac{V}{400}
$$

$\therefore \quad$ Strength of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=\frac{V}{400} \times 123=\mathrm{x} \mathrm{g} /$ litre (say)
(where eq. wt. of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ is 123)
Strength of sample (given) $=6.15 \mathrm{~g} /$ litre
\therefore
6.15 gm of the sample contains pure
$\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=\mathrm{xg}$
100 gm will contain $=\frac{a}{6.15} \times 100=\mathrm{y}$
$\therefore \quad$ Percentage purity of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ sample y Now normality of Mg^{+2} ions $=$ Normality of $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$
$\therefore \quad$ Strength of $\mathrm{Mg}=$ Normailty \times Eq. wt. $=\frac{V}{400} \times 24=\mathrm{z} \mathrm{g} / \mathrm{litre}$
$\therefore \quad 6.15 \mathrm{gm}$ of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ contain $=\mathrm{zg}$ of mg 100 gm of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ will contain $=\frac{Z}{6.15} \times 100=\mathrm{a}$
$\therefore \quad$ Percentage of Mg in the $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ sample = a

RESULT:-
\% purity of $\mathrm{MgSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ sample $=\mathrm{y}$
$\%$ of Mg in sample $=\mathrm{a}$

PRECATUTIONS:-

i. EDTA solution should be taken in the burette because in the titration flask, the proper pH of the solution has to be maintained.
ii. To avoid the high reactivity of the reagent with other ions, the pH of solution should he controlled by suing buffer solution.
iii. In order to avoid co-precipitation, adsorption etc. precipitation should not occur during the titration.

EXPERIMENT - 6

AIM:- To determine the strength of Zn^{2+} ion per litre in the given solution of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, provided $\frac{N}{20}$ EDTA solution.

APPARATUS REQUIRED:-

Burette, titration flask, dropper, etc.

CHEMICAL REQUIRED:-

i. EDTA
ii. Xylenol orange as indicator.

CHEMICAL EQUATIONS:-

$$
\mathrm{Zn}^{2+}+\text { Xylenol } \rightarrow[\mathrm{Zn}-\text { xylenol }]^{2-} \text { complex }
$$

$$
[\mathrm{Zn}-\text { xylenol }]^{2-} \text { complex }+ \text { EDTA } \rightarrow[\mathrm{Zn}-\text { EDTA }]^{2-} \text { complex }+ \text { Xylenol }
$$

PROCEDURE:-

i. Rinse and fill the burette with EDTA solution.
ii. Now Pipette out 20 ml of $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ solution in the titration flask.
iii. Add about 30 ml of distilled water, 3-4 drops of the indicator. Add hexamine powder till we get to red colour.
iv. Run EDTA solution from the burette into the flask till the colour of solution changes from red to lemon yellow.
v. Repeat the titration to get a set of three concordant readings.

S.No.	Initial reading of burette	Final reading of burette	Vol. of EDTA solution used in ml .
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \end{aligned}$			

CALCULATIONS:-

Using normality equation

$$
\mathrm{N}_{1} \times \mathrm{V}_{1}=\mathrm{N}_{2} \times \mathrm{V}_{2}
$$

$$
\left(\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}\right) \quad \text { (EDTA solution.) }
$$

$$
\mathrm{N}_{1} \times 20=\frac{N}{20} \times \mathrm{V}
$$

N_{1}, i.e., normality of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ solution $=\frac{V}{400}$
Normality of $\mathrm{ZnSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}=$ Normality of Zn^{2+} ions
$\therefore \quad$ Strength of Zn^{2+} ions $=$ Normality \times Eq. wt.

$$
\begin{aligned}
& =\frac{V}{400} \times 32.5 \\
= & \times \mathrm{g} / \mathrm{litre}(\mathrm{say})
\end{aligned}
$$

(Eq. wt. of $\mathrm{Zn}^{2+}=32.5$)

RESULT:-

Strength of Zn^{2+} ions/litre $=$ a $\mathrm{g} / \mathrm{litre}$.

PRECAUTIONS:-

i. EDTA solution should be taken in the burette because in the titration flask, the proper pH of the solution has to be maintained.
ii. The complex formed must be highly stable otherwise we cannot get the sharp end point due to dissociation.
iii. In order to avoid co-precipitation, adsorption etc. precipitation should not occur during the titration.

EXPERIMENT - 7

AIM:- To separate or identify the constituents present in an inorganic mixture containing $\mathrm{Pb}^{2+}, \mathrm{CU}^{2+}$ and Cd^{2+} by paper chromatography.

APPARATUS REQUIRED:-

Whatmann filter paper No. 1, chromatography jar, lead pencil, capillary tubes, scale.

CHEMICAL REQUIRED:-

i. N-butyl alcohol saturate with 3 N HCl .
ii. $\quad 1 \% \mathrm{Na}_{2} \mathrm{~S}$ solution.
iii. Inorganic mixture containing $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}$ and Cd^{2+} ions.

THEORY:-

Chromatography is the technique which is used for separation of constituents of a mixture. The technique of chromatography is based on adsorption of the components of a mixture on a suitable adsorbent. It is used for coloured and colourless both type of mixture.

PROCEDURE:-

i. First of all cut a strip of about $20 \times 5 \mathrm{~cm}$ from whatmann filter paper no. 1.
ii. Now draw a horizontal line with pencil about 2 cm from the bottom.
iii. Apply a spot of mixture solution containing $\mathrm{Pb}^{2+}, \mathrm{Cu}^{2+}$ and Cd^{2+} ions on the pencil line by means of a capillary tube. Dry the spot with the help of air dryer.
iv. Now lower the filter paper strip into chromatography jar in such a way that it does not touch the sides of the jar and hangs vertically straight.
v. Place the developing liquid i.e. mixture of n-butyl alcohol saturated with 3 N HCl in the jar and cover it. The level of the solution should be 2-3 cm only.
vi. Allow the developing liquid to rise till it has travelled a distance of about 15 cm . then dry the strip with the help of air dryer.
vii. After that spray $1 \% \mathrm{Na}_{2} \mathrm{~S}$ solution on the filter paper strip when three spots (two black and other yellow) will appear on the strip.
viii. Measure the distance travelled by spots as well as by the solvent.

OBSERVATION AND CALCULATIONS:-

When $1 \% \mathrm{Na}_{2} \mathrm{~S}$ solution is sprayed then the colours produced on the various spots are:

$$
\mathrm{Pb}^{2+} \quad \text { black }
$$

.rose
pink
[In case dithiozone is used then the colours] are rose pink, purple brown and purple
Cu^{2+} blackpurple brown
Cd^{2+} yellow \qquad .purple

Distance travelled by black spot (due to Pb^{2+}) $=\mathrm{d}_{1} \mathrm{~cm}$
Distance travelled by black spot (due to Cu^{2+}) $=\mathrm{d}_{2} \mathrm{~cm}$
Distance travelled by yellow spot (due to Cu^{2+}) $=\mathrm{d}_{3} \mathrm{~cm}$
Distance travelled by solvent (due to Cu^{2+}) $=\mathrm{d}_{4} \mathrm{~cm}$
R_{f} value of black spot $\left(\mathrm{Pb}^{2+}\right)=\frac{d_{1}}{d_{4}}$
R_{f} value of black spot of Cu^{2+} ion $=\frac{d_{2}}{d_{4}}$
and

$$
\mathrm{R}_{\mathrm{f}} \text { value of yellow spot of } \mathrm{Cu}^{2+} \text { ion }=\frac{d_{3}}{d_{4}}
$$

RESULT:-

R_{f} value of $\mathrm{Pb}^{2}=\frac{d_{1}}{d_{4}}=0.27$
R_{f} value of Cu^{2+} ion $=\frac{d_{2}}{d_{4}}=0.20$

$$
\text { and } \quad \mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{Cd}^{2+} \text { ion }=\frac{d_{3}}{d_{4}}=077
$$

PRECAUTIONE:-

i. Always keep the glass jar covered and undisturbed during the experiment.
ii. The paper strip should be erect and not curled.
iii. The spots of the solution must not dip in the developing solvent.
iv. Use a fine capillary tube for applying a spot of solution.

EXPERIMENT - 8

AIM:- Identify the inorganic anions $\mathrm{CI}^{-}, \mathrm{Br}^{-}$and I^{-}by paper chromatography.

APPARATUS REQUIRED:-

Whatmann filter paper no.1, capillary tube, chromatography jar, lead pencil, scale.

CHEMICAL REQUIRED:-

i. Inorganic mixture containing $\mathrm{CI}^{-}, \mathrm{Br}^{-}$and I^{-}ions.
ii. Developing solvent (10 ml of n -butyl alcohol +5 ml pyridine +10 ml 1.5 $\mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$).
iii. Visualising reagent (ammonical AgNO_{3} solution)

THEORY:-

Chromatography is the technique which is used for separation of constituents of a mixture. The technique of chromatography is based on adsorption of the components of a mixture on a suitable adsorbent. It is used for coloured and colourless both type of mixture.

PROCEDURE:-

i. First of all cut a strip of about $20 \times 5 \mathrm{~cm}$ from whatmann filter paper no. 1.
ii. Now draw a horizontal line with pencil about 2 cm from the bottom.
iii. Apply a spot of mixture solution containing $\mathrm{CI}^{-}, \mathrm{Br}^{-}$and I^{-}ions on the pencil line by means of a capillary tube. Dry the spot with the help of air dryer.
iv. Now lower the filter paper strip into chromatography jar in such a way that it does not touch the sides of the jar and hangs vertically straight.
v. Place the developing liquid i.e. $(10 \mathrm{ml}$ of n -butyl alcohol +5 ml pyridine + $10 \mathrm{ml} 1.5 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$)in the jar and cover it. The level of the solution should be 2-3 cm only.
vi. Allow the developing liquid to rise till it has travelled a distance of about 15 cm . then dry the strip with the help of air dryer.
vii. After that spray ammonical AgNO_{3} solution on the filter paper strip when three spots (two black and other yellow) will appear on the strip.
viii. Measure the distance travelled by spots as well as by the solvent.

OBSERVATION AND CALCULATIONS:-

Distance travelled by CI ${ }^{-}$spot $=d_{1} \mathrm{~cm}$

$$
\begin{gathered}
\text { Distance travelled by } \mathrm{Br}^{-} \text {spot }=\mathrm{d}_{2} \mathrm{~cm} \\
\text { Distance travelled by } \mathrm{I}^{-} \text {spot }=\mathrm{d}_{3} \mathrm{~cm} \\
\therefore \quad \text { Distance travelled by solvent front }=\mathrm{d}_{4} \mathrm{~cm} \\
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{CI}^{-}=\frac{d_{1}}{d_{4}} \\
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{Br}^{-}=\frac{d_{2}}{d_{4}}=0.36 \\
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{I}^{-}=\frac{d_{3}}{d_{4}}=0.47
\end{gathered}
$$

RESULT:-

$$
\begin{aligned}
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{CI}^{-} \text {(chloride) ion } & =0.24 \\
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{Br}^{-} \text {(bromide) ion } & =0.36 \\
\mathrm{R}_{\mathrm{f}} \text { value of } \mathrm{I}^{-} \text {(iodide) ion } & =0.47
\end{aligned}
$$

PRECAUTIONS:-

i. Always keep the glass jar covered and undisturbed during the experiment.
ii. The paper strip should be erect and not curled.
iii. The spots of the solution must not dip in the developing solvent.
iv. Use a fine capillary tube for applying a spot of solution.

EXPERIMENT - 9

AIM:- To determine the specific reaction rate of the hydrolysis of ethyl acetate (or methyl acetate) catalyzed by hydrogen ions at room temperature.

APPARATUS REQUIRED:-

Beaker, burette, pipette, conical flask, stop watch.

CHEMICAL REQUIRED:-

i. Ethylacetate
ii. $\quad \frac{N}{20} \mathrm{NaOH}$
iii. $\frac{N}{2} \mathrm{HCl}$

THEORY:-

The hydrolysis of ethyl acetate in dilute aqueous solution gives acetic acid and ethyl alcohol. It is an example of pseudounimolecular reaction.

$$
\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{H}^{+}} \mathrm{CH}_{3} \mathrm{COOH}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}
$$

The molecularity of this reaction is 2 because it requires simultaneous collision of 2 molecules (one of ester and another of water) but water is present in such a large excess that its concentration remains practically unchanged during the course of reaction. The result is that the rate of reaction depends only on the concentration of ethyl acetate and hence the order of the reaction is one.

$$
\text { Rate }=\frac{d[\text { ester }]}{d t}=\mathrm{k} \text { [Ester] }
$$

The rate constant for a first order reaction is given by

$$
\mathrm{K}=\frac{2.303}{t} \log \frac{a}{a-x}
$$

We study the progress of this reaction by determining the concentration of acetic acid in solution at different intervals of time by titration with a standard solution of alkali.

If V_{0}, V_{t} and V_{α} are the volumes of alkali used after zero, t and infinite time. Then

$$
\begin{gathered}
\mathrm{K}=\frac{2.303}{t} \log \frac{V_{\alpha}-V_{0}}{\left(V_{\alpha}-V_{0}\right)-\left(V_{t}-V_{0}\right)} \\
\mathrm{K}=\frac{2.303}{t} \log \frac{V_{\alpha}-V_{0}}{V_{\alpha}-V_{t}}
\end{gathered}
$$

REQUIREMENTS:-

Beakers, conical flask, burette, pipette, stop watch, ethylacetate, $\frac{N}{2} \mathrm{HCl}, \frac{N}{20}$ NaOH , ice, etc.

PROCEDURE:-

i. Take 100 ml of $\frac{N}{2} \mathrm{HCl}$ in a clean beaker and about 10 ml of given ethyl acetate (or methyl acetate in a clean test tube. When both have acquired the room temperature, pipette out 5 ml of ethyl acetate and transfer it to the flask containing acid.
ii. After shaking well immediately withdraw 5 ml of the reaction mixture into the conical flask containing some crushed ice to arrest the reaction, after it immediately start the stop watch. Titrate it against $\frac{N}{20} \mathrm{NaOH}$ using phenolphthalein as indicator. The volume of NaOH used corresponds to V_{0}.
iii. After 10 minutes, again pipette out 5 ml of the reaction mixture into a conical flask containing some ice and titrate it against NaOH . Similarly repeat the experiment after 20, 30, 40 minutes.
iv. Finally, heat the reaction mixture in a water bath at about $70^{\circ} \mathrm{C}$ for half an hour. Allow the flask to cool to room temperature.
v. Pipette out 5 ml from this reaction mixture and titrate against $\frac{N}{20} \mathrm{NaOH}$. The volume of NaOH used corresponds to V_{α}.

OBSERVATIONS AND CALCULATION:-

S.No.	Time in minutes T	Vol. of $\mathbf{N a O H}$ used in $\mathbf{m l}, \mathbf{V}_{\mathrm{t}}$	$V_{\alpha}-V_{t}$	$K=\frac{2.303}{t} \log \frac{V_{\alpha}-V_{0}}{\alpha_{-V_{t}}}$
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \\ & 4 . \\ & 5 . \\ & 6 . \end{aligned}$	$\begin{gathered} \hline 0 \\ 10 \\ 20 \\ 30 \\ 40 \\ \propto \end{gathered}$	$\mathrm{V}_{0}=$ V_{10} $=.$ $\mathrm{V}_{20}=$ $V_{30}=$ $V_{40}=$ $V_{\alpha}=$	$\begin{aligned} & V_{\propto}-V_{0} \\ & V_{\propto}-V_{10} \\ & V_{\propto}-V_{20} \\ & V_{\propto}-V_{30} \\ & V_{\propto}-V_{40} \\ & V_{\propto}-V_{40} \end{aligned}$	$\begin{aligned} & \mathrm{K}=\frac{2.303}{10} \\ & \frac{V_{\alpha}-V 0}{V_{\alpha}-V_{10}} \\ & \mathrm{~K}=\frac{2.303}{20} \\ & \frac{V_{\alpha}-V 0}{\mathrm{~V}_{\alpha}-V_{20}} \\ & \mathrm{~K}=\frac{2.303}{30} \\ & \frac{V_{\alpha}-V 0}{\mathrm{~V}_{\alpha}-V_{30}} \\ & \mathrm{~K}=\frac{2.303}{40} \end{aligned}$

		$\ldots \ldots \ldots$		$\frac{V_{\alpha}-V 0}{V_{\alpha}-V_{40}}$

RESULT:-

As the value of k , as calculated above, comes out to the almost same in each case, therefore, the reaction is of first order.

Alternatively, plot a graph of $\log \frac{V_{\alpha}-V_{0}}{V_{\alpha}-V_{t}}$ against t . A straight line indicates that the reaction is of $1^{\text {st }}$ order. The value of k can be calculated from the slope of the curve which is equal to $\frac{k}{2.303}$.

EXPERIMENT:-10

AIM:- To prepare a colloidal solution of arsenious sulphide.

APPARATUS REQUIRED:-

Conical flask, test tubes, filter paper, Kipp's apparatus for $\mathrm{H}_{2} \mathrm{~S}$.

CHEMICAL REQUIRED:-

i. Aresenious oxide $\left(\mathrm{As}_{2} \mathrm{O}_{3}\right)$.
ii. Distilled water.

THEORY:-

Aresenious sulphide is a lyophobic sol. It can be obtained by passing $\mathrm{H}_{2} \mathrm{~S}$ gas through arsenic oxide solution.

$$
\begin{aligned}
\mathrm{As}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O} & \leftrightharpoons 2 \mathrm{H}_{3} \mathrm{As} \mathrm{O}_{3} \\
2 \mathrm{H}_{3} \mathrm{AsO}_{3}+3 \mathrm{H}_{2} \mathrm{~S} & \rightarrow \mathrm{As}_{2} \mathrm{~S}_{3}+6 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

PROCEDURE:-

i. Take a 250 ml conical flask and add 1 gm arsenious oxide and 200 ml distilled water into the flask.
ii. Now heat the contents of the flask to boiling for about 15 minutes.
iii. Cool and filtered the solution.
iv. Now pass $\mathrm{H}_{2} \mathrm{~S}$ gas through the above filterate till it develops a yellow colour.
v. Continue to pass $\mathrm{H}_{2} \mathrm{~S}$ gas till it does not intensify the colour of the solution.
vi. After it bubble H_{2} or CO_{2} gas into the yellow solution to remove excess of $\mathrm{H}_{2} \mathrm{~S}$ gas.
vii. Alternatively the sol may be boiled to remove excess of $\mathrm{H}_{2} \mathrm{~S}$.
viii. Allow the sol to achieve the room temperature this bright yellow solution is known as arsenious sulphide sol.

PRECAUTIONS:-

i. Use pure $\mathrm{H}_{2} \mathrm{~S}$ gas.
ii. The whole apparatus should be cleaned before use.
iii. Handle aresenious oxide carefully, since it is poisonous.

EXPERIMENT:-11

Aim: Determine the surface tension of a given liquid at room temp using stalagmometer by drop number method.

REQUIREMENTS:-

Stalgmometer, specific gravity bottle, a small rubber tube with a screw pinch cork, distilled water, experimental liquid.

THEORY:-

In the drop number method, the number of drops formed by equal volumes of two liquid is counted. If m_{1} and m 2 is the mass of one drop of each of the liquid having densities d 1 and d 2 respectively. If n 1 and n 2 is the number of drops formed by volume v of the two liquids, then their surface tensions are related as

$$
\mathrm{V} 1 / \mathrm{Y} 2=(\mathrm{d} 1 / \mathrm{d} 2) *(\mathrm{n} 2 / \mathrm{n} 1)
$$

One of the liquid is water its surface tension and density are known. Then te surface tension of the given liquid can be calculated.

PROCEDURE:-

1. Clean the stalgmometer with chromic acid mix, wash with water and dry it.
2. Attach a small piece of rubber tube having a screw pinch cock at the upper end of the stalgmometer.
3. Immerse the lower end of the stalgmometer in distilled water and suck the water $1-2 \mathrm{~cm}$ above mark A. adjust the pinch cork so that $10-15$ drops fall per minute
4.Clamp the stalgmometer allow the water drops to fall and start counting the number of drops when the meniscus crosses the upper mark A and stop counting when the meniscus passes mark B
4. Repeat the exercise to take three to four readings
5. Rinse the stalgmometer with alcohol and dry it
6. Suck the given liquid in the stalgmometer and count the drops as in case of water
7. Take a clean dry weighing bottle weighs it with water as well as with liquid.
8. Note the temp of water taken in a beaker.

OBSERVATIONS: -

Room temp $=t 0^{\circ} \mathrm{C}$
Density of water=dw
Surface tension of water $=\mathrm{V}$ dynes $/ \mathrm{cm}$

S. no.	No. of drops with water nw	No. of drops with liquid nl
1.		
2.		
3.		
4.		$\mathrm{Nl}=$
mean	$\mathrm{Nw}=$	

Weight of empty specific gravity bottle=w1gram
Weight of specific gravity bottle+water=w2 gram
Weight of empty sp.gravity bottle+liquid=w3gram
Weight of water $=(w 2-w 1)$ gram
Weight of liquid= (w3-w1)gram

CALCULATIONS:-

Density of the liquid
$\mathrm{Dl}=(\mathrm{w} 3-\mathrm{w} 1) /(\mathrm{w} 2-\mathrm{w} 1) * \mathrm{dw}$
Surface tension of liquid $=\mathrm{Yl} / \mathrm{Yw}=(\mathrm{dl} / \mathrm{dw})^{*}(\mathrm{nw} / \mathrm{nl})^{*} \neq \mathrm{w}$
Result
The surface tension of liquid is \qquad dynes/cm.

Stalagmometer

EXPERIMENT -12

AIM:- To determine the viscosity of the given liquid.

APPARATUS REQUIRED:-

Ostwald's viscometer, specific gravity bottle, Rubber tube.

CHEMICAL REQUIRED:-

Distilled water, liquid whose viscosity is to be determined.

THEORY:-

Viscosity of the given liquid is determined by using Ostwald's viscometer. A known volume of the given liquid is allowed to flow through the capillary of the viscometer and time of flow $\left(t_{1}\right)$ from mark h_{1} to h_{2} is noted. The experiment is then respected with an exactly same volume of water and the time of flow (t_{2} (from mark h_{1} to h_{2} is noted. If η_{1} and η_{2} are the viscosities of the two liquid respectively, then

$$
\frac{\eta_{1}}{\eta_{2}}=\frac{t_{1} d_{1}}{t_{2} d_{2}}
$$

or

$$
\eta_{1}=\frac{t_{1} d_{1}}{t_{2} d_{2}} \times \eta_{2}
$$

PROCEDURE:-

A. To determine the density of the given liquid.

i. Wash and clean the specific gravity bottle. Rinse it with ethyl alcohol and dry it with the help of drier.
ii. Weigh the specific gravity bottle accurately.
iii. Fill the specific gravity bottle with water and measure its weight. Then remove the water and dry it again. Now fill the specific gravity bottle with the given liquid and again measure its weight.

B. To determine the viscosity of the given liquid.

i. Wash and clean the viscometer Rinse it with ethyl alcohol and dry it with the help of drier.
ii. Attach a piece of rubber tube to the end C and clamp the viscometer vertically on a stand.
iii. Add 15 ml of distilled water through the arm of bulb a. The quantity of water should be such that when sucked from C, it stands above the bulb B and also some water remains in bulb A.
iv. Suck up water through the rubber tubing so that it rises above mark h_{1}. Press the rubber tubing with hand.
v. Now release the pressure on rubber tubing and allow the water to flow back. Start the stop watch as soon as the water reaches mark h_{1} and stop it when the water just crosses the mark h_{2}. Repeat the experiment thrice.
vi. Remove water from the viscometer. Dry it and then Repeat steps (iii) to (V) with the given liquid. Repeat the experiment with given liquid thrice.

Specific gravity bottle

Ostwald's viscometer

OBSERVATION:-

Room temperature $=t^{\circ} \mathrm{C}$
Weight of empty specific gravity bottle $=\mathrm{w}_{1} \mathrm{~g}$
Weight of specific gravity bottle $=\mathrm{w}_{2} \mathrm{~g}$
Weight of specific gravity bottle + given liquid $=\mathrm{w}_{3} \mathrm{~g}$
$\therefore \quad$ Weight of water $=\left(\mathrm{w}_{2}-\mathrm{w}_{1}\right) \mathrm{g}$
Weight of liquid $=\left(\mathrm{w}_{3}-\mathrm{W}_{1}\right) \mathrm{g}$
Density of water at $\mathrm{t}^{\circ} \mathrm{C}=\mathrm{d}_{\mathrm{w}} \mathrm{g} / \mathrm{l}$
Viscosity of water at $\mathrm{t}^{\circ} \mathrm{C}=\eta_{\mathrm{w}}$ poise

S.No.	Time taken by water to flow from h_{1} to h_{2} in second	Time taken by liquid to flow from h_{1} to h_{2} in second
1. 2. 3. 4. Mean time	$\mathrm{tw}_{\mathrm{tw}}=$	$\mathrm{tl}=$

CALCULATION:-

Density of liquid $=\frac{\text { Wight of liquid }}{\text { weig ht of water }}$
$\mathrm{d}_{1}=\frac{\left(w_{3}-w_{1}\right)}{\left(w_{2}-w_{1}\right)}$
Viscosity of the liquid can be calculated by using the following relation:

$$
\frac{\eta_{l}}{\eta_{\mathrm{w}}}=\frac{t_{l}}{t_{w}} \times \frac{d_{l}}{d_{w}}
$$

$\eta_{l}=\frac{d_{l} \times t_{l}}{t_{w} \times d_{w}} \times \eta_{\mathrm{w}}$ Poise

RESULT:-

The viscosity of given liquid in \prod_{1} poise

PRECAUTION:-

i. The specific gravity bottle and viscometer should be thoroughly cleaned.
ii. Exactly same volume of the water as well as liquid should be used.
iii. The viscometer should not be disturbed during noting the time of flow of water as well as liquid.

EXPERIMENT - 13

AIM:- To determine the specific refractivity of a given liquid.

APPARATUS REQUIRED:-

Pyknometer or specific gravity bottle, abde's refractometer, source of light, dropper, weight box.

CHEMICAL REQUIRED:-

Given liquid whose specific refractivity is to be determined.

PROCEDURE:-

1. Determination of density of given liquid

i. Clean the pyknometer with chromic acid (solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$) carefully and then wash it thoroughly several times with water. Rinse it with ethyl alcohol and dry it with the help of a drier.
ii. Suspend the pyknometer from the end of the balance beam by means of a copper hook and weigh it accurately.
iii. Now attach a clean rubber tube to the end ' a ' of pyknometer and immerse the end ' b ' in distilled water and suck the distilled water through the rubber tube gently till water fills the bulb and stands to the mark on end a. In case water stands below the mark then suck more water and in case the water stands above the mark then remove excess water with the help of a filter paper strip. Ensure that no air bubble is present in pyknometer. Dry it from outside by wiping with a filter paper and weigh it.
iv. Then remove the water and dry it again. Repeat the experiment with the given liquid.
2. To determine the refractivity of the given liquid.
i. Open the prism box, clean the prism surfaces with ethyl alcohol (with soft cotton) and allow it to dry.
ii. Introduce 3-4 drops of the given liquid with the help of a dropper between the prisms and press them tightly together.
iii. Allow the light from the lamp to fall on the mirror. Set the mirror to reflect maximum light to the prism. Black spots in the field of view are due to insufficient liquid, then introduce 1 or 2drops of given liquid more.
iv. Rotate the prism box by moving the lever until the boundary between the shaded and bright parts appears sharp.
v. If the light shade disc has a band of colours, make it sharp by rotating the knob of compensator.
vi. Adjust the prism box lever with screw so that light shade disc passes through the centre of the cross wires.
vii. Read the refractive index of the given liquid directly on the scale through the eye-piece. Take three readings from bright to dark field and another three readings from dark to bright field. Take average of these readings.

OBSERVATIONS:-

Weight of empty pyknometer $=\mathrm{W}_{1} \mathrm{~g}$
Weight of pyknometer + water $=w_{2} \mathrm{~g}$
Weight of pyknometer + given liquid $=W_{3} g$

$$
\begin{array}{lcl}
\therefore & \text { Weight of water } \begin{array}{lll}
& = & \left(\begin{array}{lll}
\mathrm{w}_{2} & \left.-\mathrm{w}_{1}\right) & \mathrm{g} \\
\text { Weight of liquid }=\left(\mathrm{w}_{3}-\mathrm{w}_{1}\right) \mathrm{g}
\end{array}\right. \\
\therefore & \text { Density of liquid }=\frac{\text { weig ht of liquid }}{\text { weig ht of water }}=\frac{w_{3}-w_{1}}{w_{2}-w_{1}} \mathrm{~g}
\end{array}
\end{array}
$$

Assuming density of water as one we can calculate the specific refractivity of given liquid

$$
\therefore \quad \text { Specific refractivity, } \mathrm{r}=\left(\frac{n_{r}{ }^{2}-1}{n_{r}{ }^{2}+2}\right) \frac{1}{d}
$$

Where n_{r} is refractive index and d is density of given liquid.

RESULT:-

Therefore specific refractivity of given liquid is ' r '.

Table: Refractive indeces of water at

Some liquids

temperatures

Table 1. Density of
different

Liquid	Refractive index
Acetic acid	1.3718
Acetone	1.3616
Benzene $^{\text {CCl }_{4}}$	1.5044
Chloroform	1.4631
Ethyl lcohol	1.4486
Ethyl acetate	1.3620
Methyl	1.3312
alcohol	1.4999
Toluene	1.3333
Water	

Temperature in ${ }^{\circ} \mathbf{C}$	Density in g/ml
0	0.99987
1	0.99993
2	0.99997
3	0.99999
4	1.00000
5	0.99999
6	0.99997
7	0.99993
8	0.99988
9	0.99981
10	0.99973
11	0.99963
12	0.99952
13	0.99940
14	0.99927
15	0.99913
16	0.99897
17	0.99884
18	0.99862
19	0.99843
20	0.99823
21	0.99802
22	0.99780
23	0.99757
24	0.99733
25	0.99708
26	0.99681
27	0.99654
28	0.99626
29	0.99598
30	0.99568
31	0.99537
32	0.99506
33	0.99473
34	0.99440

35	0.99406
36	0.99372
37	0399336
38	0.99300
39	0.99262
40	0.99225
50	0.98807

EXPERIMENT:-14

AIM:- To determine the melting point of organic compound.

REQUIREMENTS:-

i. A 100 ml beaker or a Thiele's tube, a fine capillary tube, an iron stand with clamp, porous plate, spatula, burner etc.
ii. The organic compound whose melting point is to be determined and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ or Paraffin wax.

PROCEDURE:-

i. First of all powder the crystalline substance.
ii. Take a capillary tube and seal it's one end by heating it.
iii. Fill the capillary tube with the substance whose m.pt has to be determined. To fill the tube, make a heap of the powdered substance on the porous plate. Push one end of the capillary tube into the heap. Some of the substance will enter the capillary tube.
iv. Now tap the sealed end of the capillary tube on the porous plate gently. Fill the capillary tube upto $2-3 \mathrm{~mm}$.
v. Attach the capillary tube to a thermometer using a thread.
vi. Take liquid paraffin in a beaker or in a thiele's tube and place it over a piece of wire gauze placed over a tripod stand.
vii. Clamp the thermometer carrying the test tube to an iron stand and immerse them in the bath of liquid paraffin. The surface tension of the bath liquid is sufficient to hold the capillary tube in position.
viii. Heat the beaker slowly while constantly stirring the contents using a stirrer to maintain a uniform temperature throughout.
ix. When the temperature is within 15° of the melting point of the pure substance, the flame is reduced. Then the temperature rises slowly.
x. Note the temperature $\left(\mathrm{t}_{1}\right)$ when the substance starts melting.
xi. Again note the temperature (t_{2}) when the substance has completely melted.
xii. The average of the two readings gives the correct melting point of the substance.

OBSERVATION:-

M.Pt. of the given compound in $1^{\text {st }}$ case $=t_{1}{ }^{\circ} \mathrm{C}$
M.Pt. of the given compound in $2^{\text {nd }}$ case $=t_{2}{ }^{\circ} \mathrm{C}$
$\therefore \quad$ M.Pt. of the unknown given compound is $\left(\frac{t_{1}+t_{2}}{2}\right){ }^{\circ} C$

PRACAUTIONS:-

i. Tap the capillary tube gently while filling the powdered compound, to avoid breaking of the tube.
ii. Don't take excess of the acid in the beaker.
iii. The capillary tube should not be attached to the thermometer using a rubber band as it gets spoiled.
iv. Heating of the acid should be gentle with constant stirring to maintain uniform temperature.
v. The bulb of the thermometer and the capillary should not touch the bottom of the acid bath.

EXPERIMENT-15

AIM:- To determine boiling point of organic compound.

APPARATUS REQUIRED:-

A thiele's tube or beaker, thermometer, a fine capillary tube, an ignition tube, an iron stand with clamp, burner etc.

CHEMICAL REQUIRED:-

The organic liquid and conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

PROCEDURE:-

i. First of all fill two-thirds of the small test tube with the given liquid whose boiling point has to be determined.
ii. Fix this test tube to the thermometer with a rubber band in such a way that the bottom of the tube is at the middle of the thermometer bulb. The rubber band should be fixed near the mouth of the tube so that it remains outside the acid bath.
iii. Fill half of the beaker with Con. sulphuric acid and place it over a wire gauze placed over a tripod stand.
iv. Clamp the thermometer carrying the test tube to an iron stand through a cork. Lower the thermometer along with the tube into the acid bath.
v. Adjust the thermometer so its bulb is well under the acid and the open end of the tube with the rubber band is sufficiently outside the acid bath.
vi. Take the capillary tube and seal at it about 1 cm from one end by heating it in flame and giving it a slight twist.
vii. Place the capillary tube in the test tube containing the given liquid so that the sealed part of it stands in the liquid.
viii. Start heating the acid bath slowly and stir the bath gently. Keep an eye on the liquid and the test tube and also on the thread of the mercury in the thermometer.
ix. At first a bubble or two will be seen escaping at the end of the capillary tube dipped in the liquid, but soon a rapid and continuous stream of air bubbles escapes from it. At this stage the vapour pressure of the liquid just exceeds the atmospheric pressure.
x. Note the temperature $\left(\mathrm{t}_{1}\right)$ when continuous stream of bubbles starts coming out.
xi. Remove from the flame and note the temperature $\left(\mathrm{t}_{2}\right)$ when the evolution of bubbles from the end of the capillary tube just stops.
xii. The mean of these two temperatures gives the boiling point of the liquid.
xiii. Allow the temperature to fall by $10^{\circ} \mathrm{C}$ and repeat the heating and again note the boiling point.

OBSERVATION:-

The temperature when a rapid and continuous stream of bubbles comes out $=\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$.

The temperature at which the evolution of bubbles just stops $=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$

$$
\text { Mean }=\frac{t_{1}{ }^{\circ}+t_{2}{ }^{\circ}}{2}=t^{\circ} \mathrm{C} .
$$

PRECAUTIONS:-

1. If on placing the sealed capillary tube in the test tube, the liquid is seen rising in the capillary tube, it indicates that the capillary tube is not properly sealed. Reject this capillary tube and use a new one.
2. The seal point of the capillary tube should be well within the liquid.
3. The acid bath must be heated very slowly and the acid is stirred to ensure uniform heating.

RESULT:-

The boiling point of the given organic liquid $=\mathrm{t}^{\circ} \mathrm{C}$

EXPERIMENT - 16

Aim : To Prepare pure sample of Iodoform

Iodoform $\left(\mathrm{CHI}_{3}\right)$ is the iodine analogue of chloroform. It is a pale yellow crystalline solid (m.p. $119^{\circ} \mathrm{C}$), having a characteristic odour. It is used as a mild antiseptic and disinfectant. It is also used in the preparation of many medicinal ointments used as pain-relievers.
lodoform can be prepared by treating any organic compound containing $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH})$ - group (e.g., ethanol, 2-propanol, 2-butanol) or $\mathrm{CH} 3 \mathrm{CO}^{-}$group (e.g., propanone, 2-butanone) with iodine in presence of sodium hydroxide. In the laboratory, it is usually prepared from either ethanol or propanone. The chemical reactions involved are:

(a) With ethanol

$2 \mathrm{NaOH}+\mathrm{I}_{2} \rightarrow \mathrm{NaOI}+\mathrm{NaI}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{NaOI} \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{NaI}+\mathrm{H}_{2} \mathrm{O}$
$\mathrm{CH}_{3} \mathrm{CHO}+3 \mathrm{NaOI} \rightarrow \mathrm{I}_{3} \mathrm{CCHO}+3 \mathrm{NaOH}$
$\mathrm{I}_{3} \mathrm{CCHO}+\mathrm{NaOH} \rightarrow \mathrm{CHI}_{3}+\mathrm{HCOONa}$
(b) With Acetone
$\mathrm{CH}_{3} \mathrm{COCH}_{3}+3 \mathrm{NaOI} \rightarrow \mathrm{CH}_{3} \mathrm{COCI}_{3}+3 \mathrm{NaOH}$
$\mathrm{CH}_{3} \mathrm{COCI}_{3}+\mathrm{NaOH} \rightarrow \mathrm{CHI}_{3}+\mathrm{CH}_{3} \mathrm{COONa}$

PROCEDURE :-

(i) Dissolve 5 g of iodine in 5 ml acetone or ethanol in a 100 ml conical flask or round bottomed flask.
(ii) Add $5 \% \mathrm{NaOH}$ solution in small portions with constant shaking the flask. Cool the flask from time to time under tap water so that temperature does not rise above $40^{\circ} \mathrm{c}$. The addition of NaOH solution is further continued till the brown colour of iodine just disappears.
(iii) Allow the flask to stand at room temperature for 5-10 minutes.
(iv) Filter the iodoform, wash with little cold water and then dry on a filter paper.
(vi) Recrystallize the crude iodoform by addition of small amount of rectified spirit in a 100 ml conical flask and heat it on a water bath.
(vii) Add more rectified spirit slowly till the iodoform dissolves.
(viii) Filter the solution quickly through a fluted filter paper into a beaker.
(ix) Cool the solution in ice. The iodoform will crystallize rapidly.
(x) Filter the crystals on a Buchner funnel, dry the crystals.

RESULT:-

(i) Yield of crystals $=\ldots \ldots .$. g
(ii) Colour of crystals $=$ Sparkling yellow
(iii) Melting point $=119^{\circ} \mathrm{C}$

EXPERIMETN:- 17

AIM:- To prepare a sample of m-Dinitrobenzene from nitrobenzene.

APPARATUS REQUIRED:-

Round bottom flask, Air condenser, Water bath, glass rod, boiling chips.

CHEMICAL REQUIRED:-

Nitrobenzene 5 ml

Conc. $\mathrm{HNO}_{3} \quad 6-7 \mathrm{ml}$
Conc. $\mathrm{H}_{2} \mathrm{SO}_{4} 10 \mathrm{ml}$

CHEMICAL REACTION:-

Nitrobenzene

m -Dintrobenzene

PROCEDURE:-

i. Take 10 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $6-7 \mathrm{ml}$ of conc. HNO_{3} in a 100 ml round bottom flask.
ii. Add few boiling chips in the flask. Add nitrobenzene slowly with shaking and cooling the flask thoroughly.
iii. When whole of the nitrobenzene has been added shake the flaks vigorously fit it with air condenser and then place it on a boiling water bath.
iv. Clamp both the neck of the flask and condenser.
v. Remove and shake the flask time to time.
vi. After half an hour remove a drop of reaction mixture by means of glass rod and pour it into cold water. If it solidifies to a pale yellow solid, stop heating, remove the condenser and pour the reaction mixture from the
flask into about 200 ml of cold water with continuous stirring when a yellow solid is formed.
vii. Filter the precipitates through a fluted filter paper. Wash it with cold water and dry it completely.
viii. Purification: add the precipitates in 25 ml of rectified spirit and heat the flask on a boiling water bath until the solid has completely dissolved. Filter while hot through a filter paper and dry them on a porous plate.

PRECAUTIONS:-

i. Add nitrobenzene in small installments and shake the flask thoroughly after each addition.
ii. Cool the flask in water if it becomes hot after each addition.

RESULT:-

i. Yield of crystals $=$ g
ii. Colour of the crystals $=$
iii. Melting point $=90^{\circ} \mathrm{C}$

EXPERIMENT -18

AIM:- To prepare a pure sample of Dibenzal acetone.

APPARATUS REQUIRED:-

Conical flask, cork, beaker, glass rod.

CHEMICAL REQUIRED:-

Benzaldehyde $=7.5 \mathrm{ml}$
Acetone $=3.0 \mathrm{ml}$
10% aq. $\mathrm{NaOH}=15 \mathrm{ml}$
Rectified spirit $=50 \mathrm{ml}$

CHEMICAL REACTION:-

Dibenzal acetone can be obtained by Claisen Schmidt reaction by condesnsing two moles of benzaldehyde with one mole of acetone in presence of alkali.

PROCEDURE:-

i. Take 7.5 ml benzaldehyde, 3 ml acetone and 25 ml rectified spirit in a conical flask fitted with a cork. Shake it.
ii. Add 15 ml of 10% aq. NaOH into the conical flask drop by drop with continuous shaking of the solution.
iii. Cork the flask and shake it vigorously for about 10 min . releasing pressure from time to time keeping the loose fitting of cork.
iv. Allow it to stand for 30 min . at room temperature and then cool in ice bath for about 5 min .
v. Filter the ppt. and wash with water to remove excess of alkali.
vi. Recrystallised the ppt. by dissolving these in minimum amount of hot rectified spirit and allow it to cool slowly filter the crystal and dry them between the folds of filter paper.

PRECAUTIONS:-

i. Wash the ppt. thoroughly with distilled water to remove excess of alkali.
ii. Use minimum amount of hot rectified spirit to dissolve the crude product for recrystallisation.

RESULT:-

Yield of crystals $=$ \qquad
Colour of crystals $=$ Pale yellow
Melting point $=112^{\circ} \mathrm{C}$

EXPERIMENT:- 19

AIM:- To prepare a sample of 2,4-Dinitrophenyl derivative of Acetophenone.

APPARATUS REQUIRED:-

Conical flask, beaker, glass rod etc.

CHEMICAL REQUIRED:-

2, 4-DNP hydrazine - 1 g
Acetophenon - 0.5 g
Ethanol - 20ml
Conc. $\mathrm{HCl}-2 \mathrm{ml}$

CHEMICAL REACTION:-

PROCEDURE:-

i. Add 1 g 2 , for - DNP in 20 ml ethanol in a conical flask.
ii. Add 2 ml conc. HCl and warm gently.
iii. Filter and add 0.5 g acetophenone in the solution.
iv. Boil the solution and then cool it to room temperature.
v. Filter the crystals of 2, 4 DNP derivative and recrystallise them from ethanol.

RESULT:-

Colour of crystals - Orange
Yield -

$$
\text { M.Pt. } \quad-237-239^{\circ} \mathrm{C}
$$

EXPERIMETN -20

AIM:- To Prepare a sample of p-Bromoacetanilide from acetanilide.

APPARATUS REQUIRED:-

Conical flask, beaker, glass rod, burette etc.

CHEMICAL REQUIRED:-

Acetanilide 4 g
Glacial acetic acid 20 ml
Bromine 1.8 ml

CHEMICAL REACTION:-

PROCEDURE:-

i. Take 4 g of acetanilide into a 100 mL conical flask Add 10 mL of glacial acetic acid.Stirring with a glass rod may be necessary to dissolve the acetanilide.
ii. Now add 1.8 ml of bromine into 10 ml of acetic acid add bromine-acetic acid solution to acetanilide solution with stirring then leave the mixture 15 min .
iii. Transfer the mixture into beaker contain 100 ml of water with stirring. Collect the product by vacuum filtration using Büchner funnel.
iv. Purify the product by crystallization method using ethanol. Collect the white crystals by vacuum filtration, dried and weigh and calculate the percent yield.

PRECAUTIONS:-

i. Wear gloves and goggles during performing the experiment.
ii. Use extreme caution. Bromine burns can be quite severe.

RESULT:-

Yield-
Melting point - $167^{\circ} \mathrm{C}$

EXPERIMENT:-21

AIM:- To purify a given sample of phthalic acid by sublimation.

APPARATUS REQUIRED:-

China dish, funnel, tripod stand, wire gauze, cotton.

CHEMICAL REQUIRED:-

Impure phthalic acid - 5 g

THEORY:-

Substances, which vapourise on heating, are purified by the method of sublimation. The substance, which has to be purified, is taken in a china dish, covered by a funnel. The china dish is heated on wire gauze. The substance volatilizes and the vapour condenses on the cooler portions of the funnel.

PROCEDURE:-

i. Take about 5 g of impure phthalic acid in a dry and clean china dish and place it on a wire gauze kept on the tripod stand.
ii. Cover the china dish with a perforated paper and place and inverted funnel on it. Close the stem of the funnel with cotton.
iii. Heat the china dish on a low flame. Phthalic acid sublimes and condense on the cooler portions of the funnel.
iv. Remove the burner when whole of phthalic acid sublimes.
v. Cool and remove the funnel. Scratch pure phthalic acid from the inner walls of the funnel with a spatula on a watch glass.

EXPERIMENT:-22

AIM:- To purify a given sample of camphor by sublimation.

APPARATUS REQUIRED:-

China dish, funnel, tripod stand, wire gauze, cotton.

CHEMICAL REQUIRED:-

Impure camphor - 5 g

THEORY:-

Substances, which vapourises on heating, are purified by the method of sublimation. The substance, which has to be purified, is taken in a china dish, covered by a funnel. The china dish is heated on wire gauze. The substance volatilizes and the vapour condenses on the cooler portions of the funnel.

PROCEDURE:-

i. Take about 5 g of impure camphor in a dry and clean china dish and place it on a wire gauze kept on the tripod stand.
ii. Cover the china dish with a perforated paper and place and inverted funnel on it. Close the stem of the funnel with cotton.
iii. Heat the china dish on a low flame. Impure camphor sublimes and condense on the cooler portions the funnel.
iv. Remove the burner when whole of camphor sublimes.
v. Cool and remove the funnel. Scratch pure camphor from the inner walls of the funnel with a spatula on a watch glass.

VERIFILD

Dr. Anita Singh
Incharge NAAC Criteria-I PSSOU, CG Bilaspur

PANDIT SUNDARLAL SHARMA (OPEN) UNIVERSITY CHHATTISGARH BILASPUR

LABORATORY MANUAL

Bachelor of Science

 Chemistry(B.Sc. IInd Year)

Department of Chemistry
PANDIT SUNDARLAL SHARMA (OPEN) UNIVERSITY CHHATTISGARH, BILASPUR VERIFIED

LABORATORY MANUAL

Chemistry (BSc Second Year)

INORGANIC CHEMISTRY

A. Gravimetric Analysis

1. Quantitative estimations of $\mathrm{C} u^{+2}$ as copper thiocyanate
2. Quantitative estimations of Ni^{+2} as Ni -dimethyl glyoxime.
B. Colorimetry
3. To verify Beer lambert law for $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and determine the concentration of given $\mathrm{KMnO}_{4} / \mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution .
C. Preparations
4. Preparation of cuprous chloride
5. Preparation of Prussian blue from iron fillings
6. Preparation of tetraamine cupric sulphate
7. Preparation of chrome alum
8. Preparation of potassium trioxalatochromate(III)

PHYSICAL CHEMISTRY

9. To determine the enthalpy of solution of solid calcium chloride
10. To study the distribution of iodine between water and CCl_{4}
11. To determine the CST of phenol water system
12. To determine the solubility of benzoic acid at various temperatures and to determine the $\Delta \mathrm{H}$ of the dissolution process
13. To determine the enthalpy of neutralization of a weak acid/weak base vs. strong base/strong acid and determine the enthalpy of ionization of weak acid/weak base

ORGANIC CHEMISTRY

14. To analyze the given organic compound in a systematic way i.e. detection of extra element ,functional group , determination of melting point , preparation of solid derivatives of following compounds : Naphthalene, oxalic acid, β-Napthol ,benzophenone , pthalic acid, aspirin, p-nitro toluene, anthracene ,m-dinitrobenzene , benzyl chloride , glucose, fructose, urea, cinnamic acid , benzamide.

EXPERIMENT 1

AIM : - Find out gravimetrically the percentage of Cu in given solution of $\mathrm{CuSo}_{4} .5 \mathrm{H}_{2} \mathrm{O}, 20 \mathrm{~g}$ of which has been dissolved per litre.

APPARALUS REQUIRED:-

Beaker, watch glass, pipette, glassrod.

CHEMICAL REQUIRED:-

1. Ammonium thiocyanate solution.
2. Saturated solution of $\mathrm{NH}_{4} \mathrm{HSO}_{3}$.
3. Solution of $\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}$.

REACTIONS:-

$$
\begin{gathered}
2 \mathrm{CuSO}_{4}+\mathrm{H}_{2} \mathrm{O}+\mathrm{NH}_{4} \mathrm{HSO}_{3} \rightarrow \mathrm{Cu}_{2} \mathrm{SO}_{4}+\mathrm{NH}_{4} \mathrm{HSO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4} \\
\mathrm{Cu}_{2} \mathrm{SO}_{4}+2 \mathrm{NH}_{4} \mathrm{SCN} \rightarrow 2 \mathrm{CuSCN}+\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}
\end{gathered}
$$

OBJECTIVE:-

In this experiment firstly, cupric salt is reduced to cuprous salt either by using sulphurous acid or ammonium bisulphate solution. Then cuprous ions are precipitated by ammonium thiocyanate $\left(\mathrm{NH}_{4} \mathrm{SCN}\right)$. After then precipitates formed are filtered, washed dried and weighed using sintered glass crucible. From the weight of precipitates formed percentage of copper is determined.

PROCEDURE:-

1. Take 20 ml of given solution of copper sulphate in a clean 400 ml beaker.
2. Add few drops of HCl , followed by addition of 25 ml of $10 \% \mathrm{NH}_{4} \mathrm{HSO}_{3}$ Solution.
3. Dilute the above solution by adding 150 ml of distilled water. Boil the solution.
4. Now put the beaker on an asbestos sheet, and then add drop wise 10% ammonium thiocyanate solution with constant stirring till the supernatant solution becomes colourless. (To check for complete precipitation add few drops more of ammonium thiocyanate).
5. Cover the beaker and allow the contents to stand for 2-3 hours preferably overnight.
6. Filter the precipitates using G-4 crucible, wash the precipitates using 1% cold dilute solution of $\mathrm{NH}_{4} \mathrm{HSO}_{3}$ till the filterate is free from SCN^{-}ions.
7. Finally wash the precipitates with 20% alcohol to remove $\mathrm{NH}_{4} \mathrm{SCN}$.
8. Heat the crucible in oven at $110^{\circ}-120^{\circ} \mathrm{C}$ to constant weight.

OBSERVATIONS:-

Volume of given solution $=20 \mathrm{ml}$
Strength of given Copper sulphate solution $=20 \mathrm{~g} /$ litre
Weight of sintered glass crucible Before experiment i.e., empty= $W_{1} g$
Weight of sintered glass crucible
and $\mathrm{Cu}_{2}(\mathrm{SCN})_{2}=\mathrm{W}_{2} \mathrm{~g}$
Weight of $\mathrm{Cu}_{2}(\mathrm{SCN})_{2}$ formed $=\mathrm{w}_{2-\mathrm{w}} 1=\mathrm{Wg}$ CALCULATIONS:-
I. From 20 ml of given solution weight $\mathrm{Cu}_{2}(\mathrm{SCN})_{2}$ formed $=\mathrm{Wg}$

From 1 ml of given solution weight $=\frac{W}{20}$
From 1000 ml given solution weight $={ }_{20}^{W} \times 1000=50 \mathrm{Wgm}$
II.
$\mathrm{Cu}_{2}(\mathrm{SCN})_{2}=2 \mathrm{cu}$
$243 \mathrm{gm} \mathrm{Cu} \mathrm{Cu}_{2}(\mathrm{SCN})_{2}$ is formed from copper $=127 \mathrm{gm}$
$1 \mathrm{gm} \mathrm{Cu}_{2}(\mathrm{SCN})_{2}$ is formed from copper $=\frac{127}{243}$
$50 \mathrm{w} \mathrm{gm} \mathrm{of} \mathrm{Cu}_{2}(\mathrm{SCN})_{2}$ is formed from copper $=$
$\frac{127}{243} \times 50 w=$ a gm-litre (say)
III. In 20.0 n gms of copper sulphate, actual amount of Cu present $=\mathrm{agms}$

In 1 gms of copper sulphate,

Actual amount of Cu present $=\frac{a}{20}$
In 100 gms of copper sulphate,

$$
\text { Actual amount of } \mathrm{Cu} \text { present }+\frac{a}{20} \times 100+5 a
$$

RESULT:-

$$
\text { Percentage of } \mathrm{Cu}=5 \mathrm{a}
$$

PRECAUTIONS:-

1. Precipitate i.e. $\mathrm{NH}_{4} \mathrm{SCN}$ should not added in excess to avoid solubility of $\mathrm{Cu}_{2}\left(\mathrm{SCN}_{2}\right.$ as complex ion
2. Washing of the precipitates is to be done with dilute solution of $\mathrm{NH}_{4} \mathrm{HSO}_{3}$ to avoid oxidation of $\mathrm{Cu}(\mathrm{I})$ to Cu (II)

EXPERIMENT:-2

AIM :- Find out gravimetrically the percentage purity of $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}, 20.0 \mathrm{~g}$ of which has been dissolved per litre.

CHEMICAL REQUIRED:-

1. One \% dimethyl glyoxime solution in alcohol
2. Aqueous ammonia solution
3. Solution of nickel salt

APPARATUS REQUIRED:-

Pipette, glass rod, watch glass, beaker, sintered glass crucible

PROCEDURE:-

1. Take a 400 ml beaker add into it 20 ml of given nickel salt solution with the help of pipette.
2. Add 5 ml of HCl and dilute the mixture by adding nearly 200 ml distilled water. Heat the solution to $70-80^{\circ} \mathrm{C}$
3. Place the beaker on an asbestos sheet and add slowly 30 ml of 1% alcoholic DMG solution with constant stirring.
4. After it adds immediately ammonia solution with constant stirring till it gives ammonical smell.
5. Now keep the beaker undisturbed for 45 minutes approx. Then digest the precipitates on a water bath for 30 minutes.
6. Cool the solution and check for complete precipitation by adding two drops of DMG.
7. Now filter the precipitates using G-3 crucible using a suction pump.
8. Wash the precipitates with small lots cold water several times.
9. Dry the crucible containing precipitates in an electric oven to constant weight.

OBSERVATION:-

Vol. of given solution taken for precipitation $=20 \mathrm{ml}$
Strength of given nickel sulphate solution $=20.0$ gms/litre
Weight of sintered glass crucible before experiment i.e., empty $=W_{1} \mathrm{gms}$
Weight of sintered glass crucible and nickel dimethyl glyoxime $=W_{2}$ gms
Weight nickel dimethyl glyoxime formed $=\mathrm{W}_{2}-\mathrm{W}_{1}=\mathrm{W}$ gms

CALCULATIONS:-

I. From 20 ml of given solution weight of nickel dimethyl glyoxime formed $=\mathrm{W}$ gms
From 1 ml of given solution weight of nickel dimethyl glyoxime formed $=\frac{W}{20}$
From 1000 ml of given solution weight of nickel dimethyl glyoxime formed $=\frac{W}{20} \times 1000=50 \mathrm{Wgms}$
II. $\quad \mathrm{Ni}\left(\mathrm{C}_{4} \mathrm{H}_{7} \mathrm{O}_{2} \mathrm{~N}_{2}\right)_{2}=\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$
288.7 gms of nickel dimethyl glyoxime is obtained from $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=$ 280.7 gms

1 gm of nickel dimethyl glyoxime is obtained from $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}=\frac{280.7}{288.7}$
50 w gms of nickel dimethyl glyoxime is obtained from $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$

$$
=\frac{280.7}{288.7} \times 50 \mathrm{~W}=\mathrm{ag} / \text { litre }(\text { say })
$$

III. In 20.0 gms of impure sample of $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$, actual amount of $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ present $=\mathrm{ag}$
In 1 gm of impure sample of $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$ actual amount of NiSO_{4}. $7 \mathrm{H}_{2} \mathrm{O}$ present $=\frac{a}{20}$

In 100 gms of impure sample of $\mathrm{NiSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ present $=\frac{a}{20} \times 100=$ $5 a$

RESULT:-

Percentage of purity of $\mathrm{NiSO}_{4} .7 \mathrm{H}_{2} \mathrm{O}$

$$
\text { Sample }=5 \mathrm{a} \%
$$

PRECAUTIONS:-

1. Excess addition of precipitant is avoided, so that precipitant may not get separated along with the precipitates.
2. To avoid decomposition of precipitates the drying should not carried out above $120^{\circ} \mathrm{C}$.

Experiment: 3

Aim:-To verify Beer-Lambert law for KMnO4 and determine the concentration of the
given KMnO 4 solution.
Chemical Required:- solid KMn04.
Apparatus Required:- Spectrophotometer or Elico colorimeter, measuring flasks (100 ml and 1000 ml), weight box, fractional weights, graph papers.
OBJECTIVE:-
In it we used Beer Lamberts law, this law was dependent on absorbance phenomena.For it number of standard solutions of different concentrations are prepared. Their absorbance is determined. Then a plot of A vs c is drawn. It is a straight line passing through the origin. This proves the validity of Beer-Lambert law. Then the absorbance of the unknown solution is determined under the same experimental conditions. The concentration corresponding to this absorbance is read from the calibration graph.

PROCEDURE:-

(i) Prepare a stock solution of $10-{ }^{3} \mathrm{M}$ KMn04 by dissolving 0.0316 g solid KMn 04 in one liter distilled water.
(ii) Took four 100 ml flat-bottomed measuring flasks and name them as A, B, C and D respectively. (iii)Now pipette out 20, 40, 60 and 80 ml of stock solution of KMn04 into flask A, B, C and D respectively. Make the solution up to the given mark in Conical flask by dilution with distilled water in every 100 ml flask.

20 ml stock solution $+\quad 40 \mathrm{ml}$ stock sol.+ $\quad 60 \mathrm{ml}$ stock
sol+ $\quad 80 \mathrm{ml}$ stock sol+
80 ml distilled
60 ml water
40 ml water
20 ml water

A
B
C
D
(iv) Fill one optical cell with the stock solution and $2^{\text {nd }}$ with distilled water. Insert them in colorimeter. Insert different filters one by one and find the filter that gives maximum absorbance. This filter is not to be changed throughout the experiment.
(v) Remove the stock solution and fill that optical cell with the solution (minimum 4ml) from flask A. Note the absorbance. Repeat the experiment with solution from flask B, C and D and note the absorbance in each case. Plot the calibration curve between A vs c.
(vi) Now fill the unknown solution and note the absorbance.

OBSERVATION AND CALCULATION:-

Solution	Concentration	Absorbance
Stock solution	$10-{ }^{3} \mathrm{M}$	
Flask A	$0.2 \times 10-{ }^{3} \mathrm{M}$	\ldots
Flask B	(10- ${ }^{3} \mathrm{M}$	
Flask C	$0.6 \times 10-{ }_{3}^{3} \mathrm{M}$	
Flask D	$10-{ }^{3} \mathrm{M}$	
From the calibration curve, read the concentration of the unknown solution corresponding to the absorbance. Further a straight line verified the Beer-Lambert's law.		
RESULT: The concentration	MnO 4 solution	$\begin{aligned} & \begin{array}{c} 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ \times 10^{-3} \\ \times 10^{-3} \\ \times 10^{-3} \times 10^{-3} \\ \mathrm{c} \xrightarrow{\left(10^{-3}\right.} \mathrm{M} \end{array} \end{aligned}$

Calibration curve
.. .

EXPERIMENT NO. 4

AIM :- Prepare a pure sample of cuprous schloride, $\mathrm{Cu}_{2} \mathrm{Cl}_{2}$
APPARATUS REQUIRED :- Tripod stand, burner, funnel, round bottom flask, measuring cyclinder, etc.

CHEMICAL REQUIRED:-

1. Copper turnings $=10 \mathrm{gm}$
2. Sodium Chloride $(\mathrm{NaCl})=5 \mathrm{gm}$
3. Sodium sulphite $=5 \mathrm{gm}$
4. Copper sulphate $\left(\mathrm{CuSO}_{4} .5 \mathrm{H}_{2} \mathrm{O}\right)=10 \mathrm{gm}$
5. Conc. $\mathrm{HCl}=30 \mathrm{ml}$

CHEMICAL REACTION:-

$$
\begin{aligned}
\mathrm{CuSO}_{4}+2 \mathrm{NaCl} & \rightarrow \mathrm{CuCl}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4} \\
\mathrm{CuCl}_{2}+\mathrm{Cu} & \rightarrow \mathrm{Cu}_{2} \mathrm{Cl}_{2} \downarrow \\
\mathrm{Cu}_{2} \mathrm{Cl}_{2}+\mathrm{HCl} & \rightleftharpoons \mathrm{H}^{+}\left[\mathrm{Cu}_{2} \mathrm{Cl}_{3}\right]
\end{aligned}
$$

OBJECTIVE:- Cuprous chloride $\left(\mathrm{Cu}_{2} \mathrm{Cl}_{2}\right)$ can be obtained by action of cupric chloride with excess copper in acidic solutions in presence of NaCl . Mixture is heated till the solution becomes colorless. The Colourless solutions when diluted results in formation of white powder i.e Cuprous chloride.

PROCEDURE:-

1. Measure 10 gm powdered Copper Sulphate, 10 gm Copper turnings, 5 gm Sodium Chloride and 30 ml of conc. HCl in a 250 ml round bottom flask.
2. Now heat the above mixture with occasional shaking. Continue the heating till the blue colour of solution disappears and a straw colour is obtained. It is the end point of heating.
3. Now stop the heating and pour the contents into a beaker containing 300 ml waterd.
4. Filter the white colour ppt. obtained and wash with very dilute solution of sodium sulphite.
5. Finally wash the ppt. with alcohol and ether.
6. Dry the ppt. in oven or by use of filter paper.

RESULT:-

1. Yield $=4-6 \mathrm{gm}$
2. Colour $=$ White

PRECUATIONS:-

1. Cuprous Chloride prepared is kept in a properly corked dry test tube to avoid oxidation of copper due to which it changes to green colour.
2. HCl should be added carefully.

EXPERIMENT 5

AIM:- To prepare pure crystals of Prussian blue from Iron fillings.
APPARATUS REQUIRED:- Measuring cyclinder, beaker, dropper, water bath, wire gauze, etc.

CHEMICAL REQUIRED:-

1. Potassium ferrocyanide $\left(\mathrm{K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]=25 \mathrm{gm}\right.$
2. Iron fillings $=5 \mathrm{gm}$
3. Conc. $\mathrm{HCl}=25 \mathrm{ml}$
4. Conc. $\mathrm{HNO}_{3}=5 \mathrm{ml}$

OBJECTIVE:- Prussian complex can be prepared by adding potassium ferrocyanide to ferric salt. A dark blue coloured compound is obtained i.e. Prussian complex.

REACTIONS:-

$$
\begin{gathered}
2 \mathrm{HNO}_{3}(\mathrm{Conc} .) \rightarrow \mathrm{H}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+[\mathrm{O}] \\
2 \mathrm{Fe}+6 \mathrm{HCl}+3[\mathrm{O}] \rightarrow 2 \mathrm{FeCl}_{3}+3 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{~K}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+\mathrm{FeCl}_{3} \rightarrow \mathrm{~K} \mathrm{Fe}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]+3 \mathrm{KCl}
\end{gathered}
$$

PROCEDURE:-

1. Weigh out 5 gm of Iron fillings in a clean 250 ml beaker. Pour into it 20 ml conc. HCl and 5 ml conc. HNO_{3}.
2. Allow the above mixture to stand for sometime till the reaction starts.
3. Now heat the contents of the beaker till the fumes are removed.
4. Now add 25 gm of Potassium ferrocyanide with constant stirring till blue colour ppt. formed.
5. Filter the ppt. and wash with dil. HCl .
6. Dry the ppt. in oven or by using filter paper.

OBSERVATIONS:-

1. Colour-blue
2. Yield $=18$ to 20 gm

PRECAUTIONS:-

1. Pottasium ferrocyanide in powder form should be added to hot solution with constant stirring.

Experiment:6

Aim:-To prepare pure crystals of tetra ammine copper (II) sulphate.

Objective:-

Tetra ammine copper sulphate is a complex of $\mathrm{Cu}(\mathrm{II})$ with coordination no. 4. When $\mathrm{NH}_{4} 0 \mathrm{H}$ i: gradually added to an aqueous solution ofCuSO ${ }_{4}, \mathrm{CU}(\mathrm{OH}) 2$ is first precipitated and the precipitate ther dissolves, yielding a solution of a bright blue colour which is due to formation of tetra ammine copper (II) ion, $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4\right]$

$$
\begin{aligned}
& \mathrm{CuSO}_{4}+2 \mathrm{NH}_{4} \mathrm{OH} \rightarrow \mathrm{Cu}(\mathrm{OH})_{2}+\left(\mathrm{NH}_{2}\right)_{2} \mathrm{SO}_{4} \\
& \mathrm{Cu}(\mathrm{OH})_{2} \rightleftharpoons \underset{(\mathrm{ppt.})}{\rightleftharpoons \mathrm{Cu}(\mathrm{OH})_{2}} \rightleftharpoons \underset{\text { (dissolved) }}{\rightleftharpoons} \mathrm{Cu}^{2+}+2 \mathrm{OH}^{-} \\
& \mathrm{Cu}^{2+}+4 \mathrm{NH}_{3} \rightleftharpoons \\
& \quad\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}
\end{aligned}
$$

The removal of practically the whole cupric ion from the solution shifts the equilibrium of equation (2) towards the right, until the cupric hydroxide has completely passed into solution. The deep blue solution containing tetraamminecopper (II) ion is known as Schweitzer's reagent.
It has an ammonical odour, and crystals ofthe complex are obtained by adding ethyl alcohol to the above solution.
CHEMICAL REQUIREMENTS:-

Copper sulphate
1:1 Ammonia
Ethyl Alcohol
Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$

5 gm
20 ml
$20-25 \mathrm{ml}$
$1-2 \mathrm{ml}$

APPARTUS REQUIRED:- Beaker,Burner,Measuring Cylinder.

PROCEDURE:-

(i) Take 5 gm powdered copper sulphate in a 250 ml clean beaker and dissolve it in a minimum amount of water. Add $1-2 \mathrm{ml}$ cone. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to make the solution clear.
(ii) Now pour 1: $1 \mathrm{NH}_{4} 0 \mathrm{H}$ very slowly into the beaker with constant stirring till a ppt. of $\mathrm{Cu}(\mathrm{OH}) 2$ first formed is redissolved yielding a deep blue solution due to formation of $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right) 4 \mathrm{j} 2+\right.$ and smell of ammonia is present due to slight excess of $\mathrm{NH}_{4} 0 \mathrm{H}$.
(iii) Now to the blue solution, add $20-25 \mathrm{ml}$ of ethanol dropwise with constant stirring. Add about 2 ml of $\mathrm{NH}_{4} 0 \mathrm{H}$ and heat the beaker in a water bath at $60-70^{\circ} \mathrm{C}$ for about 15-20 minutes.
(iv) Stop heating, cover the beaker with clock glass and allow it to stand undisturbed for 2-3 hours (preferably overnight)
(v) Long needle shaped blue crystals of complex are formed. Filter, wash with little alcohol and dry the crystals gently by pressing in between the folds of the filter paper or by placing in a desiccator.

OBSERVATIONS:-

(i) Yield= about 5 gm
(ii) Colour = Blue
(iii) \quad Shape $=$ Needle-shaped crystals

EXPERIMENT: 7

AIM:- To prepare pure crystals of chrome alum.
APPARATUS REQUIRED:- Measuring cyclinder, ice bath, round bottom flask etc.

CHEMICAL REQUIRED:-

1. Potassium dichromate $\left(\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}\right)=5 \mathrm{gm}$
2. Ethyl alcohol $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right)=5-10 \mathrm{ml}$
3. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}=5 \mathrm{ml}$
4. Water $=20-25 \mathrm{ml}$

REACTIONS :-

$$
\begin{gathered}
\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+4 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+4 \mathrm{H}_{2} \mathrm{O}+3[\mathrm{O}] \\
\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+[\mathrm{O}] \rightarrow \mathrm{CH}_{3} \mathrm{CHO}+\mathrm{H}_{2} \mathrm{O} \\
\mathrm{~K}_{2} \mathrm{SO}_{4}+\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}+24 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{~K}_{2} \mathrm{SO}_{4} \mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3} .24 \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

OBJECTIVE:-

When acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ solution is reduced by ethyl alcohol and the reduced solution is allowed to stand dark purple coloured crystals of chrome-alum separates out.

PROCEDURE:-

1. Dissolve 5 gm of $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in about 20 ml of water in round bottom flask and add 5 ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to it.
2. Shake well till whole of solid dissolves.
3. Cool the contents at room temperature in placing ice bath.
4. Now add dropwise ethyl alcohol with constant stirring. take care that the temperature does not exceed $50^{\circ} \mathrm{C}$. If required add $2-3$ pieces of ice.
5. Cool the solution in ice bath and allow the contents to stand for about 10 hours.
6. Filter and wash the crystals with cold water and dry it using filter paper. Dark purple colour crystals formed that are chrome alum crystals.

RESULT:-

1. Colour - dark purple
2. Yield $=10-12 \mathrm{gm}$

PRECAUTIONS:-

1. Add conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ carefully.
2. Take care that temperature should not exceed $50^{\circ} \mathrm{C}$.

EXPERIMENT: 8

AIM:- To prepare pure crystals of potassium trioxalatochromate (iii)
APPARATUS REQUIRED:- Stirrer, beaker, measuring cyclinder, ice bath, glass rod etc.

CHEMICAL REQUIRED:-

1. Oxalic acid $=12-15 \mathrm{gm}$
2. Ethyl alcohol $=10-15 \mathrm{ml}$
3. Potassium dichromate $=5 \mathrm{gm}$
4. Potassium oxalate monohydrate $=6 \mathrm{gm}$

OBJECTIVE:-

Potassium trioxalatochromate can be obtained by mixing potassium dichromate with oxalic acid and potassium oxalate. The mixture on cooling yields the crystal of the complex.

PROCEDURE:-

1. Add 5 gm of powdered $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in a minimum amount of boiling distilled water in 100 ml beaker.
2. Dissolve 15 gm of powdered oxalic acid in about 25 ml distilled water in a 250 ml beaker separately.
3. Cool the dichromate solution and pour its slowly in small amount to oxalic acid solution.
4. After the completion of reaction the solution is heated to half of the volume of the mixture.
5. Pour 6 gm of potassium oxalate slowly in small amount with constant stirring till the potassium oxalate completely dissolves.
6. Now add $10-15 \mathrm{ml}$ ethyl alcohol to the above mixture and place it in ice. Bluish green crystals of the complex separates out.
7. Filter the ppt. and dry them using oven or by filter paper.

RESULT:-

1. Colour - Bluish green
2. Yield $=12-13 \mathrm{gm}$

PRECAUTIONS:-

1. Add oxalic acid carefully so that no violent reaction takes place.
2. Mixture should be place in ice bath so that temperature does not exceed.

EXPERIMENT:-9

AIM:- Determine enthalpy of dissolution of calcium chloride solid in water at room temperature.

APPARATUS REQUIRED:- Polythene bottle, thermometer, beaker, stirrer.

CHEMICAL REQUIRED:-

Powdered calcium chloride $=8 \mathrm{gm}$

OBJECTIVE:-

The objective of the experiment is to calculate the amount of enthalpy change when substance is dissolved in large amount of solvent.

$$
\begin{gathered}
\text { Enthalpy of solution }=\frac{q}{w} \times \mathrm{mJ} \\
\mathrm{Q}=\text { heat change } \\
\mathrm{w}=\text { weight of the substance taken } \\
\mathrm{m}=\text { molecular weight }
\end{gathered}
$$

PROCEDURE:-

1. Determination of water equivalent
a. Take 100 ml of water in a polythene bottle and note the temperature after 5-10 minutes.
b. Take 250 ml beaker containing water heat it to a temperature higher then room temperature.
c. Now measure 100 ml of hot water. Measure the exact temperature of hot water then quickly add it to the polythene bottle containing 100 ml of water at room temperature. Stir and note the final temperature.
2. Determination of enthalpy of solution
a. Take 200 ml of water in a polythene bottle for which water equivalent has already been determined. Note the temperature after $5-10$ minutes i.e. when it becomes constant.
b. Now add 8 gm of powdered CaCl_{2} to the polythene bottle containing 200 ml water. Stir and note the temperature.

OBSERVATIONS:-

(a) For water equivalent:-

Initial temperature of cold water $=\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$
Temperature of hot water

$$
=\mathrm{t}_{2}{ }^{\circ} \mathrm{C}
$$

Final temperature after mixing $\quad=\mathrm{t}_{3}{ }^{\circ} \mathrm{C}$
Vol. of water taken polythene bottle $=100 \mathrm{ml}=100 \mathrm{~g}$
Vol. of hot water added $=100 \mathrm{ml}=100 \mathrm{~g}$
Assuming density of water $=1 \mathrm{~g} / \mathrm{ml}$
Applying the principle of Heat lost $=$ Heat gained
Heat lost by hot water $=100 \times\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right) \mathrm{cal}$.
Heat gained by cold water $=(100+w)\left(t_{3}-t_{1}\right) \mathrm{cal}$.

$$
\begin{gathered}
100+\mathrm{W}=\frac{100 \times\left(t_{2}-t_{3}\right)}{\left(t_{3}-t_{1}\right)} \\
\mathrm{W}=\left[\frac{100 \times\left(t_{2}-t_{3}\right)}{t_{3}-t_{1}}\right]-100 \mathrm{cal} .
\end{gathered}
$$

(b)Temperature of water taken $=\mathbf{t}_{1}{ }^{\circ} \mathrm{C}$

Volume of water taken $=200 \mathrm{ml}=200 \mathrm{~g}$
Final temperature after mixing $=\mathrm{t}_{4}{ }^{\circ} \mathrm{C}$
Heat absorbed by 8.0 g of solid
$($ Calcium chloride $)=(200+8+w)\left(\mathrm{t}_{1}-\mathrm{t}_{4}\right)$
Heat absorbed by rule -1 of solid i.e., M

$$
\begin{aligned}
= & \frac{(200+8+w) t_{1}-t_{4}}{8} \times \mathrm{M} \mathrm{Cal} \\
\mathrm{M}= & \text { Molecular weight }=\mathrm{a} \mathrm{cal}(\mathrm{say})
\end{aligned}
$$

RESULT:-

$$
\begin{aligned}
& \text { Enthalpy of solution }=\mathrm{a} \mathrm{cal} / \mathrm{mol} \\
& \qquad=4.184 \times \mathrm{a} \mathrm{~J} / \mathrm{mol}
\end{aligned}
$$

PRECAUTIONS:-

1. Fresh calcium chloride should be taken otherwise it will absorb moisture from atmosphere.
2. Temperature should be noted with the help of a thermometer graduated at $0.1^{\circ} \mathrm{C}$

EXPERIMENT: 10

AIM:- Determine experimentally the partition coefficient of I_{2} in CCI_{4} and water.

APPARATUS REQUIRED:-

Four stoppered glass bottles, burette, pipette, conical flask.

CHEMICAL REQUIRED:-

1. $2 \% \mathrm{I}_{2}$ solution in CCI_{4}
2. $\mathrm{N} / 20, \mathrm{~N} / 100, \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution
3. starch solution
4. 10% KI solution
5. Distilled water

OBJECTIVE:-

When a mixture of two immiscible liquids a solute is added, it dissolves and distributes itself in a fixed ratio in both the liquids provided the form of solute does not change during distribution.

Suppose C_{1} and C_{2} are the concentration of solute $\left(\mathrm{I}_{2}\right)$ in two immiscible liquids i.e., CCI_{4} and $\mathrm{H}_{2} \mathrm{O}$. Then

Where k is partition or distribution coefficient. The values of k is different for different pairs of liquids.

PROCEDURE:-

1. Take for clean and dry glass stoppered bottles. Label them as 1,2,3, and 4 . Bottles must fit tightly.
2. Take $25 \mathrm{ml}, 20 \mathrm{ml}, 15 \mathrm{ml}$, and 10 ml saturated solution I_{2} in CCl_{4} in to bottle no. 1,2,3 and 4.
3. Now fill pure CCl_{4} in another burette and take $0,5,10$ and $15 \mathrm{ml} \mathrm{CCl}_{4}$ into Bottle no. 1,2,3 and 4 resp. So that the total volume in each bottle is 25 ml .
4. Now add 150 ml distilled water in each bottle so that the total volume in each bottle is 175 ml .
5. Stopper each bottle and shake the contents of each bottle for atleast half an hour.
6. Now keep the bottles as such till the two layers separate clearly.
7. The lower CCl_{4} layer will be intense violet and the upper aqueous layer will be yellowish.
8. Separate the two layers of each bottle with the help of a separating funnet in separate beakers.
9. Now Pipette out 20 ml of aqueous layer from bottle no. 1 into the conical flask containing $10 \mathrm{ml} 10 \%$ KI solutions and 1 ml starch solution. Titrate the solution against $\mathrm{N} / 100$ sodium thiosulphate solution $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}\right)$ using starch indicator to know the volume of titrant used. Repeat the titration with the aqueous layer of bottle no. 2,3 and 4 and record the observations.
10.Now pipette out 5 ml of CCl_{4} layer from bottle no. 1 into the conical flask. Add 1 g solid KI, containing 10 ml of 10% KI solution and add 20 ml distilled water and shake. (Don't add starch in the beginning.) Titrate it against $\mathrm{N} / 20 \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} .5 \mathrm{H}_{2} \mathrm{O}$ solution. Add 1 ml freshly prepared starch solution when the colour of the solution in the flask is light yellow. Continue adding hypo solution till the blue colour disappear. Repeat the experiment with bottle no. 2,3 and 4 .

Bottle No.	Volume of Aqueous layer	Burette reading		Vol. of Hypo used in ml
		Initial	Final	
1.	5 ml 5 ml 5 ml			V_{1} (say)
2.	5 ml 5 ml 5 ml			V_{2} (say)
3.	5 ml 5 ml 5 ml			V_{3} (say)
4.	5 ml 5 ml 5 ml			V_{4} (say)

Bottle No.	Volume of	Burette reading		Vol. of Hypoa
	CCI_{4} layer	Initial	Final	

1.	5 ml 5 ml 5 ml			V_{5} (say)
2.	5 ml			V_{6} (say)
5 ml				
3.	5 ml			V_{7} (say)
	5 ml			
4.	5 ml			V_{8} (say)
4 ml				

CALCULATIONS:-

For bottle no. 1

(i) Fueor aqous layer

20 ml of aqueous layer $\times \mathrm{N}_{1}=\mathrm{V}_{1} \times \mathrm{N} / 100$
N_{1} ' i.e., normality of I_{2} in water layer $=V_{1} / 20 \times 1 / 100$
Strength or concentration of iodine $=$ Normality \times Eq. wt.

$$
=\mathrm{V}_{1} / 20 \times 1 / 100 \times 127=\mathrm{xg} / \text { litre (say) }
$$

(ii) $\operatorname{For} \mathrm{CCI}_{4}$ layer

$$
5 \times \mathrm{N}_{3}=\mathrm{V}_{5} \times \mathrm{N} / 20
$$

N_{3}, i.e., normality of iodine in CCI_{4} layer $=\mathrm{V}_{5} \times 1 / 20 \times 1 / 5$
Strength or concentration of I_{2} in CCI_{4} layer $=\mathrm{V}_{5} \times 100 \times 127=\mathrm{yg} /$ litre (say)

Similarly, calculate the concentration of I_{2} in aqueous layer as well as in CCI_{4} layer for bottle no. 2, 3 and 4 respectively.

Bottle No.	Conc. In $\mathrm{H}_{2} \mathrm{O}$ layer	Conc. $\mathrm{In}_{\mathrm{CCI}}^{4}$ layer	$\mathrm{K}=\mathrm{CCCI}_{4} \mathrm{CH}_{2} \mathrm{O}$

1.	X g/litre	Y g/litre	$K={ }_{X}^{Y}$
2.	$\mathrm{K}=\ldots \ldots \ldots$.
3.	$\mathrm{K}=\ldots \ldots \ldots \ldots \ldots$.
4.	$\mathrm{K}=\ldots \ldots \ldots \ldots$.

RESULT:-

The value of distribution coefficient K will come out to be nearly same in every case or we can take the average value of K.

PRECAUTIONS:-

1. Only use glass stoppers as rubber stoppers can be attacked by organic solvents.
2. Use powdered form of iodine.
3. Much care should be taken to separate the 2 layers.
4. All the bottles should be kept at a constant temperature after shaking the contents of each bottle thoroughly.

OBSERVATION:-

$$
\text { Room temperature }=t^{0} \mathrm{C}
$$

Table:-

CALCULATIONS:-

For Bottle No.-(i)
(i) Aquecous layer

Vol. taken for each titration $=5 \mathrm{ml}$
Normality of I_{2} in aq. Layer $=\mathrm{N}_{1}$
Normality of $\mathrm{Na}_{2} \mathrm{~s}_{2} \mathrm{O}_{3}=\mathrm{N} / 100$
Volume used (from table) $=\mathrm{V}_{1}$

Applying normality equation

$$
\begin{array}{r}
\left(\mathrm{I}_{2} \text { in aq. Layer) } \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)\right. \\
\mathrm{N}_{1} \times 5 \quad=1 / 100^{\times} \mathrm{v}_{1}=\mathrm{v}_{1} / 500
\end{array}
$$

Strenght of $\mathrm{I}_{2}=$ Normality ${ }^{\times}$Eq. wt.

$$
=\mathrm{v}^{\prime}{ }_{1} / 500 \times 127 \mathrm{~g} / \mathrm{l}=\mathrm{ag} / \text { litre }
$$

(ii) CCI_{4} layer

$$
\begin{aligned}
& \text { Volume taken for each titration }=5 \mathrm{ml} \\
& \text { Normality of } \mathrm{I}_{2} \text { in } \mathrm{CCI}_{4} \text { layer } \\
& \text { Normality of } \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\
& \text { Volume used } \\
& =\mathrm{N} / 20 \\
& \\
& \text { Nor } / 20 \\
&
\end{aligned}
$$

Applying normality equation

(I_{2} in CCI_{4} layer)

$$
\mathrm{N}_{3} \mathrm{~V}_{3}=\mathrm{N}_{4} \mathrm{~V}_{4}\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)
$$

$$
\begin{aligned}
& \mathrm{N}_{3} \times 5=1 / 20 \times \mathrm{v}^{\prime}{ }_{1} \\
& \mathrm{~N}_{3}=\quad=\mathrm{v}^{\prime}{ }_{1} / 100 \times 127 \mathrm{gl}=\mathrm{bg} / \mathrm{l}
\end{aligned}
$$

Similarly, for Bottle No. ii, iii and iv.

(i) Table:- (i): Titration of aqueous layer using $\mathrm{N} / 100 \mathrm{Na}_{2} \mathrm{~S}_{2} \backslash \mathrm{O}_{3}$

Bottle No.	Volume Taken (ml)	Burette reading		Vol.of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ Used (ml)
		Initial	Final	
I	$\begin{aligned} & 5.0 \\ & 5.0 \\ & 5.0 \end{aligned}$			

EXPERIMENT NO. 11

AIM :-

To determine the CST of phenol - water system.

APPRATUS USED :-

A boiling tube, a stirrer, a thermometer graduated to 0.1 degree, 400 ml beaker, iron stand, tripod stand.

CHEMICALS REQUIRED :-

Phenol and distilled water.

OBJECTIVE :-

It is based on the fact that when water and phenol are mixed together at room temperature they form heterogeneous mixture having white turbidity. Now when the system is heated a temperature comes where turbidity disappears on cooling turbidity appears again. Noting the temperature at which turbidity disappears and at which it appears the mean of the two temperatures give the temperature of mixing of phenol water system. Now the solutions of phenol od different compositions are prepared and the temperature of miscibility of the two is determined in each case. Then a graph of composition of mixture vs. miscibility temperature is plotted. The temperature corresponding to the maximum is the CST of the system.

PROCEDURE :-

(I)Take 60 gm of phenol in a previously weighed boiling tube.
(ii)Add 2 ml of distilled water with the help of a graduated pipette into the phenol taken In a boiling tube. Thus the \% of phenol by weight is 75%.
(iii)Fill $2 / 3^{\text {rd }}$ of the 400 ml beaker with water and keep it on the wire gauge placed on the tripod stand.
(iv)Clamp the boiling tube into the beaker as shown. Fit the cork with two holes, one for the stirrer and other for thermometer.
(v)Heat the beaker slowly and stir the phenol water mixture. Note the temperature at which turbidity just disappears. Stop heating. Now allow thw mixture to cool and note the temperature when thw turbidity just appears.
(vi)Now again add 2 ml of distilled water with the help of a graduated pipette. Thus the \% of phenol by weight is 60%. Repeat step (v).

Repeat the process after adding 2 ml of distilled water each time taking at least seven or eight readings.

OBSERVATIONS :-

> Weight of empty boiling tube $=\mathrm{w}_{1} \mathrm{gm}$ $$
> \begin{aligned} \text { Weight of tube }+ \text { phenol } & =\left(\mathrm{w}_{1}+6\right) \mathrm{gm} \\ \text { Weight of phenol } & =6.0 \mathrm{gm} \\ \text { Density of water } & =1 \mathrm{gm} / \mathrm{ml} \text { (assuming) }\end{aligned}
>
$$

RESULT :-

(i)CTS of phenol-water system $=$ \qquad .${ }^{\circ} \mathrm{C}$
(ii)Composition of the system

$$
\begin{aligned}
& \text { Phenol }=\ldots \ldots \ldots \ldots . . \% \\
& \text { Water }=\ldots \ldots \ldots \ldots \%
\end{aligned}
$$

PRECAUTIONS :-

(i)Handle phenol very carefully as it causes severe skin burns.
(ii)Take care that in each case the level of phenol-water system in the tube must be atleast one cm below the level of water in the beaker.
(iii)For gradual and more uniform heating, surrounded the boiling tube with outer jacket (a more bigger tube).
(iv)Stirring inside the solution and outside in water must be done constantly.
(v)The bulb of the thermometer must remain dipping in phenol water system.

EXPERIMENT:- 12

AIM:- Determine solubility of benzoic acid at different temperatures and calculate $\Delta \mathrm{H}$ of dissolution.

APPRATUS REQUIRED:-

Test tubes, Test tube holder, beaker, stand, burner, thermometer etc.

CHEMICAL REQUIRED:-

1. Benzoic acid
2. Water

OBJECTIVE:-

It was perform to check the solubility of benzoic acid. A graph is plotted between solubility an temperature and from graph solubility an any temperature can be determined by using Vant's Hoff's equation.
$\log S_{2}-\log S_{1}=$ Type equation here.

PROCEDURE:-

1. Take 4 boiling test tubes and label them as $1,2,3$, and 4 .
2. Now weigh $0.1 \mathrm{gm}, 0.15 \mathrm{gm}, 0.20 \mathrm{gm}$ and 0.25 gm of benzoic acid and transfer to the labeled tube.
3. Add 20 ml of water to each tube and place them in beaker containg water.
4. Now stir the contents of tube 1 and note the temperature at which benzoic acid dissolves completely.
5. Similarly note down the temperature of all tubes.

OBSERVATIONS:-

Test tube No	Temperature at Which benzoic acid dissolves	Amount Taken(g)	Solubility Mole/litre
I	t_{1}	0.10	$\frac{0.1}{122} \times 50$
II	t_{2}	0.15	$\frac{0.15}{122} \times 50$

III	t_{3}	0.20	$\frac{0.20}{122} \times 50$
IV	t_{4}	0.25	$\frac{0.25}{122} \times 50$

CALCULATION:-

Plot a graph between solubility and temperature from the graph determine the solubility of benzoic acid using vant's Hoff's equation.
PRECAUTIONS:-

1. Handle the acid carefully.
2. Temperature should not exceed.

EXPERIMENT:-13

AIM :-

To determine the enthalpy of neutralization of a weak acid (say acetic acid) versus strong base (say NaOH) and determine the enthalpy of ionization of the weak acid.

APPRATUS USED :-

Polyethene bottles thermometer, stirrer, beakers etc

CHEMICALS REQUIRED :-

$\frac{\mathrm{N}}{2}$ acetic acid, $\frac{\mathrm{N}}{2} \mathrm{NaOH}$, distilled water.

OBJECTIVE :-

It is used to determine the value of enthalpy of neutralization which is defined as enthalpy change accompanying when one gram equivalent of the acid (or base) by base (or an acid) in a dilute solution for strong acids and for strong bases its value comes out to be nearly -58 kJ . It is nearly same for both strong acids and strong bases because in this case all acids and bases are almost completely ionised.

PROCEDURE :-

Determination of water equivalent of polyethene bottle.
(i)Take 100 ml of distilled water in polyethene bottle fitted with a stirrer and a thermometer. The thermometer should be 1 cm above the bottom of the bottle. When thermal equilibrium is achieved then note down the temperature say it is $\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$.
(ii)Heat 150 ml of distilled water in a 250 ml beaker at a temperature which is about $10-20^{\circ} \mathrm{C}$ higher than the room temperature.
(iii) Take 100 ml of hot water, note down its temperature (say it is $\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$) and immediately transfer it into the polyethene bottle already containing 100 ml of cold water. Stir well and note down the temperature of water(after mixing hot and cold water) say it is $t_{3}{ }^{\circ} \mathrm{C}$.
(iv)Throw away water from the polyethene bottle and cool the room temperature.
(v)Take 100 ml of 0.5 N acetic acid in a polyethene bottle fitted with a rubber cork with two holes. Insert a thermometer into one hole and a stirrer into the second hole.
(vi)Place 100 ml of 0.5 N NaOH in another similar polyethene bottle.
(vii)The temperature of each solution is noted separately. Let these are $\mathrm{t}_{4}{ }^{\circ} \mathrm{C}$ and $\mathrm{t}_{5}{ }^{\mathrm{O}} \mathrm{C}$ respectively.
(viii)transfer 100 ml 0.5 N NaOH into the acid as quickly as possible. The mixture is well stirred.
(ix)The temperature is noted after every minute till a constant temperature is attained. Let it be $\mathrm{t}_{3}{ }^{\circ} \mathrm{C}$.

OBSERVATIONS :-

(i)Determination of water equivalent

$$
\begin{gathered}
\qquad 100\left(\mathrm{t}_{2}-\mathrm{t}_{3}\right)=(100+\mathrm{w})\left(\mathrm{t}_{3}-\mathrm{t}_{1}\right) \\
\text { Water equivalent, } \mathrm{w}=\left[\begin{array}{c}
100(t 2-t 3) \\
(t 3-t 1)
\end{array}\right]-100
\end{gathered}
$$

(ii)Determination of enthalpy of neutralization

$$
\begin{aligned}
& \text { Initial temperature of acid }=\mathrm{t}_{4}{ }^{\mathrm{O}} \mathrm{C} \\
& \text { Initial temperature of base }=\mathrm{t}_{5}{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Final temperature after neutralization $=\left(t 6-\frac{t 4+t 5}{2}\right)-100$
Water equivalent of polyethene bottle $=w \mathrm{~g}$

PRECAUTIONS :-

(I)Temperature should be noted using thermometer graduated to $0.1^{\circ} \mathrm{C}$.
(II)The mixture of acid and base should be well stirred.

EXPERIMENT:-14

AIM :- Detection of organic compounds.
I. PRELIMINARY TESTS FOR ORGANIC COMPOUNDS

PHYSICAL CHARACTERSTICS

(a) Colour - from the colour of organic compounds following observation can be drawn

Experiment	Observation		
(a) Note the colour of compound	II.	Yellowish Pale yellow liquid	Nitro compounds
III.	Deep orange yellow	Nitro aniline, nitrophenols.	

(b) Odour:- From the odour of compound following observation can be drawn

Experiment	Observation	Inference
(a) Note the odour of	(a) Fruity smell	Esters
the compound	(b) Vinegar like	Acetic acid
	smell	Benzoyl chloride
	(c) Pungent smell	Alcohol
	(d) Wine like smell	Amines
	(e) Fishy smell	

(c) Ignition Test:- On burning organic compounds give following information

Experiment	Observation	Inference
(a) Take a small amount of compound on a nickel spatula and heat.	a) Burns with a smoky flame. b) Burns with non smoky flame. c) Burnt with sugar smell. d) Ammonical smell. e) Irritating smell with coughing. f) rotten eggs smell	Aromatic compounds Non aromatic compounds Carbohydrates Urea Benzoic acid, succinic acid, salicyclic acid Sulphur present

(d) Solubility Test:- The organic compound either dissolved in water or NaOH or dil. HCl gives following information

Experiment	Observation	Inference
a) Take a small amount of compound in a clean test tube and add $3-4 \mathrm{ml}$ water. Shake well. b) Test the compound with litmus. c) Test the solubility in dil. HCl d) Test the solubility in NaOH	a) Sparingly soluble or insoluble b) Soluble c) Turns blue litmus to red d) Turns red to blue e) Soluble and reprecipitated on adding alkali f) Soluble but reprecipitated on adding acid	Hydrocarbons, esters, ethers etc. Lower alcohols, aldehydes, ketones, acids etc. Acids, phenols Lower amines Base Phenol

PRELIMINARY CHEMICAL TESTS

1. Sodalime test:- On mixing organic compound with sodalime following observation are seen

Experiment	Observation	Inference
a) Take about 0.5 gm of solid compound with 2 gm of sodalime $(\mathrm{NaOH}+$ CaO) in a test tube and heat it	a) Ammonical smell b) Burnt sugar smell c) Smell of phenol d) Smell of bitter almonds	Urea, acetamide Carbohydrates Phenolic acid Benzaldehyde derivatives

2. Ferric chloride test:- with ferric chloride following observation are seen

Experiment	Observation	Inference
a)Dissolve 0.5 gm of compound in 2-3 ml	(a) Violet	Phenols, salicyclic
of water and add 4-5	(b) Blue	acid
drops of neutral FeCl_{3}	(c) Blue violet	P-cresol
Resorcinol, m-		

solution	(d) White ppt. changing to violet	cresol α-napthol

3. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ test:-

4. Sodium bicarbonate test:-

Experiment	Observation	Inference
a) Mix the compound		
in water and add	a)Evolution of CO_{2} with solid NaHCO_{3}	effervescence.
	b)Dissolves with no evolution of 	
	CO_{2} gas	Phenols

5. Action of KMnO_{4} solution:-

Experiment	Observation	Inference
a) Add a very dil.	a) Decolorised	Unsaturated

Solution of KMnO_{4} and dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to the solution of compound	immediately b) Decolorised slowly	compounds Aldehydes

DETECTION OF EXTRA ELEMENTS

1. For detection of extra elements we have to prepare Lassaigne's extract

a. Preparation of lassaigne's extract:-

Cut small pieces of dry sodium metal into ignition test tube now heat it till the pieces changes to silver globule. Now add a pinch of organic compound into this test tube again heat it till the tube becomes red hot. Now take a china dish containing 10 ml water now break the hot tube into this china dish. Now the solution is heated and filtered. The filtrate is known as lassaign's extract. (L.E.) or sodium extract (S.E.)

HNO_{3} to about 5ml of	b)No light Lassaigne's extract. Boiled off all gases.	yellow ppt. The solution is cooled and treated with
Yellow ppt. insoluble in	I confirmed	
AgNO_{3} solution.	$\mathrm{NH}_{4} \mathrm{OH}$.	

IDENTEIFICATION OF FUNCTIONAL GROUP

1. Test for-COOH group:-

Experiment	Observation	Inference
a)Sodium bicarbonate test:- to the given compound add a	a)Dissolve with brisk evolution of CO_{2} gas.-COOH group saturated solution of sodium bicarbonate	
b)Ester test:- To a small amount of organic compound add $1-2$	b) Fruity smell	-COOH group
ml alcohol and $2-3$		
drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$		

2. Test for phenolic group:-

Experiment	Observation	Inference
a) Litmus test:- add few	a) Blue litmus	
drops of blue litmus		
turned red		
solution to aqueous		
compound	-COOH or	
b)Ceric ammonium nitrate test:- To group present		
aqueous solution of organic compound add few drops of ceric ammonium nitrate.	b) Brown ppt.	Phenolic group
confirmed		

3. Test for Ketonic group $>\boldsymbol{C}=\boldsymbol{O}$:-

Experiment	Observation	Inference
a) Sodium nitroprusside	a) Presence of red	Presence of

	colour	$>C=O$ group
test:- add a pinch of organic compound in alkaline sodium		
nitroprusside		
solution.		
b)Schiff's reagent test:- add small amount of	b) Pink colour	
organic compound to $1-2$ ml of schiffs reagent and shake.		$>C=O$ group
		Or

4. Test for Carbohydrates:-

Experiment	Observation	Inference
a)Molisch test:- add few drops of alcoholic $\alpha-$ naphthol aolution to about 1 ml of	a)Deep violet ring at the junction aqueous solution of organic compound	Carbohydrates present
b)Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ test:- add about 1 ml of con. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to the given compound and warm.	b) Charring	Carbohydrates present

5. Test for esters:-

Experiment	Observation	Inference
a) Hydrolysis Test:-	a) Pink colour	Ester group present
To about 1 ml of		
substance, a drop		
of phenol phthalein		
and few drops of		
dil NaOH are	disappears	
added. Heat the contents on a water bath.		

6. Test for amide $\left(-\mathrm{CONH}_{2}\right)$ group:-

Experiment	Observation	Inference
a) HNO_{2} test:- add a pinch of organic	a) Effervescence	$-\mathrm{CONH}_{2}$ group present

compound to ice cold solution of NaNO_{2} and dil.		
$\mathrm{CH}_{3} \mathrm{COOH}$		
b) NaOH test:- Heat		
a small amount of		
compound with	b) $\mathrm{NH}_{3}(\mathrm{~g})$	
Evolved	$-\mathrm{CONH}_{2}$ group	
NaOH solution		present

7. Test for $-\mathrm{NH}_{2}$ group:-

Experiment	Observation	Inference
a) HNO_{2} test:- To ice cold solution of compound in dil. HCl . Add few drops of saturated	a) Brisk effervescence	Aliphatic $-\mathrm{NH}_{2}$ group present
b) Dye test:- To about 0.5 g of compound add 2-3 ml of water containing 1 ml of conc. HCl . Then cool the contents in ice, add 2 ml of $10 \% \mathrm{NaNO}_{2}$ solution dropwise with constant stirring then add ice cold solution of alkaline β naphthol	b) Orange-red dye	$\begin{gathered} \text { Aromatic } \\ \mathrm{D}\left(-\mathrm{NH}_{2}\right) \text { group } \\ \text { present } \end{gathered}$

8. Test for anilides:

Experiment	Observation	Inference
a)NaOH Test:- Heat a small amount of compound with 1- 2 ml concentrated solution of NaOH	a) Peculiar smell	-NHCOR (anilide)
group present		

9. Test for $-\mathrm{No}_{2}$ group:-

Experiment	Observation	Inference

a) Dye Test:- Heat the given compound with 1 ml of conc. HCl and few pieces of granulated tin and heat the mixture for about 5 minutes in a boiling water bath. Filters and cool the filterate in ice bath, then add 1,2 -ml of NaNO_{2} solution followed by $1,2-\mathrm{ml}$ of ice cold alkaline β naphthol solution.
a) Orange red $-\mathrm{NO}_{2}$ group
10. Test for halogen group:-

Experiment	Observation	Inference
a)Boil about 0.2 or 2-3 ml of compound with 2-	a) Ppts. Formed	Halogen group is present
3 ml of KOH or		
NaOh (alc.) for 5 minutes. Cool and add dil. HNO_{3} and $\mathrm{AgNO}_{3 .}$		

11. Test for - OH (alcoholic) group:-

Experiment	Observation	Inference
a)Ester test:- add 1g of $\mathrm{CH}_{3} \mathrm{COONa}$ to about $1-2 \mathrm{ml}$ of compound and	a) Fruity smell	Alcoholic group present
then 2-3 drops of		
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	b) Red or pink b) nitrate test:- To	colour
few drops (10-15),		Alcoholic group add 2 ml of ceric ammonium nitrate

solution		

12. Test for-CHO group:-

PREPARATION OF SOLID
 DERIVATIVES

1. DERIVATIVES OF PHENOLS:-

a. Picrates: - Mix equal amounts of saturated solution of compound and picric acid in benzene (say 3 ml each). Shake the contents vigorously. Filter the precipitates formed and recrystallise from benzene (if required).

2. DERIVATIVES OF CARBOXYLIC ACIDS:-

a. S-Benzylisothiruronium salts :- Dissolve 0.5 g of given compound in $5-6 \mathrm{ml}$ of water by heating. Add a drop of phenolphthalein indicator and then add NaOH till it becomes pink. Add 1-2 drops of HCl . Dissolve approximately 2.0 g of S-Benzyl isothiuronium chloride in $5-6 \mathrm{ml}$ of water. Mix both the solution stir and cool the precipitates formed are filtered and crystallized from hot water.

3. DERIVATIVES OF CARBOHYDRATES:-

a. Osazones :- Shake about 1 g of compound, 2 g of phenyl hydrazine hydrochloride and 3 g of sodium in a boiling water bath. Yellow mass separates out, recrystallise from alcohol.
Glucose, fructose and sucrose form osazone in approximately 2, 5 and 30 minutes respectively.

4. DERIVATIVES OF ALDEHYDES AND KETONES:-

a. 2,4- Dinitrophenyl hydrazone: - Add approximately 5 ml of 2, 4Dinitro hydrazine to 1 g or 1 ml of the compound in a dry test tube. Then add 1-2 drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Shake the contents and heat for few minutes. Cool, filter and recrystallise from alcohol or benzene.

Dr. Anita Singh Incharge NAAC Criteria-I PSSOU, CG Bilaspur

PANDIT SUNDARLAL SHARMA (OPEN) UNIVERSITY CHHATTISGARH

 BILASPUR

LABORATORY MANUAL

Bachelor of Science

Chemistry

(B.Sc. Illrd Year)

LABORATORY MANUAL

Chemistry (BSc Third Year)

CHEMISTRY

B.Sc. IIIrd Year

INDEX

SECTION - A: INORGANIC CHEMISTRY

1. SEMMICRO QUALITATIVE ANALYSIS

To analyse the given mixture for anions (acid radicals) and cations (basic radicals).
$\mathrm{Pb}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Ag}^{+}, \mathrm{Bi}^{3+}, \mathrm{Cu}^{2+}, \mathrm{As}^{3+}, \mathrm{Sb}^{3+}, \mathrm{Sn}^{2+}, \mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Al}^{3+}, \mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}$, $\mathrm{Zn}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}, \mathrm{NH}_{4}^{+}, \mathrm{CO}_{3}{ }^{2-}, \mathrm{S}^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, \mathrm{NO}_{2}{ }^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}, \mathrm{Cl}^{-}$, $\mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}{ }^{-}, \mathrm{SO}_{4}{ }^{2-}, \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}, \mathrm{PO}_{4}{ }^{3-}, \mathrm{BO}_{3}{ }^{3-}$

SECTION - B: PHYSICAL CHEMISTRY

1. To determine the strength and normality of given acid solution (approx. $\frac{N}{10} \mathrm{HCl}$) by titrating it against standard 0.5 NaOH solution conductometrically.
2. To determine the strength of given weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ solution by titrating it against standard base (NaOH) solution conductometrically.
3. To determine the normality and strength of given dibasic acid (oxalic acid) solution by titrating against standard NaOH solution conductometrically.
4. To determine the solubility and solubility product of a given sparingly soluble salt conductometerically.
5. To determine the molecular weight of a non-volatile solute by Rast method.
6. To standardize the given acid solution (like HCl) pH metrically.
7. To determine the strength of given mono basic acid (like HCl) potentiometrically.

SECTION - C: ORGANIC CHEMISTRY

1. Thin Layer Chromatography

To separate green leaf pigments by thin layer chromatography and determine their R_{f} values.

2. Laboratory Techniques

a) Colum Chromatography

To separate a mixture of coloured organic compounds (fluorescein and methylene blue) by column chromatography.
b) Steam distillation

To seprate a mixture of O - and p - nitrophenols by steam distillation.

3. Synthesis of the following organic compounds:

a) To prepare O-chlororobenzoic acid from anthranilic acid.
b) To prepare p-Bromonaniline from p-Bromoacetanilide.
C) To prepare m-nitroaniline from m-dinitro benzene.
d) To prepare S-Benzyl - iso - thiouronium chloride from thiourea.

Section - A (INORGANIC)

SCHEME OF MIXTURE ANALYSIS

The scheme of mixture analysis involves the following three main steps:-

1. Preliminary Tests.
2. Wet Tests for Anions or Acid radicals.
3. Wet Test for Cations or Basic radicals.

Wet Tests :- For wet tests, the solution of given mixture is required.
I. Water extract (WE) :- Dissolve small amount of the given mixture in distilled water. If the mixture is almost soluble then it is filtered and the filtrate is taken as water extract.
II. Sodium carbonate extract (SE) :- If the given mixture is insoluble in water then mix about 1 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in the above solution, boild and filtered. The filtrate is taken as sodium carbonate.

1. PRELMINARY TESTS:-

Some of common preliminary test are :-
I. Colour and smell :- Note down the colour and smell of the given mixture.
(a) Colour

```
                    Dark green - Cr Salt
Light green - Ferrous salt
            Green - Ni Salt
            Blue green - Cu Salt
                    Dark brown - Ferric salt
                    Yellow - Ferric salt
                    Light pink - Mn salt
                    Pink violet - Co salt
                                    White - Cu }\mp@subsup{}{}{2+},\mp@subsup{\textrm{Fe}}{}{2+},\mp@subsup{\textrm{Fe}}{}{3+},\mp@subsup{\textrm{Cr}}{}{3+},\mp@subsup{\textrm{Co}}{}{2+},\mp@subsup{\textrm{Ni}}{}{2+},\mp@subsup{\textrm{Mn}}{}{2+}\mathrm{ etc
                absent
```

(b) Smell

Vinegar smell - $\mathrm{CH}_{3} \mathrm{COO}^{-}$

 Ammonical Pungent smell $-\mathrm{NH}_{4}^{+}$salt

 Ammonical Pungent smell $-\mathrm{NH}_{4}^{+}$salt}

Rotten egg smell - S^{2-}
II. Dry Heating Test :- Heat a small amount of mixture in a dry test tube to get following inference.

Observation	\quad Inferences
Colourless, odourless gas which turns lime water, milky $-\mathrm{Co}_{2}$ Colourless gas with rotten egg smell $-\mathrm{H}_{2} \mathrm{~S}$ gas Colourless gass which turns dichromate paper green $-\mathrm{SO}_{2}$ gas	$\mathrm{CO}_{3}{ }^{2-}$
Colourless gas with Vinegar smell.	$\mathrm{SO}_{3}^{2-}{ }^{2-}$ and $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
Colourless gas with ammonical smell - NH_{3}	$\mathrm{CH}_{3} \mathrm{COO}^{-}$
Brown gas which turns FeSO ${ }_{4}$ solution black $-\mathrm{NO}_{2}$	NH_{4}^{+}salt
Reddish brown gas which turns starch paper yellow $-\mathrm{Br}_{2}$	$\mathrm{NO}_{2}{ }^{-}$or $\mathrm{NO}_{3}{ }^{-}$
Greenish yellow gas which bleaches moist litmus paper $-\mathrm{Cl}_{2}$	Br^{-}
Cl^{-}	
Violet gass which turns starch paper blue - I_{2}	I^{-}
Yellow colour when hot and white colour when cold	Zn salt
Brown colour when hot and yellow colour when cold	Pb salt
Cracking noise	$\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

III. Charcoal Cavity Test :- Add a pinch of given mixture with twice its amount of anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ and place in charcoal cavity add water heat in a reducing flame to get following in inferences.

Observation	Inferences
Red scales	Cu salt
Yellow residue on heating and white on cooling	Zn salt
Brown residue when hot and yellow when cold	Pb salt
White residue	$\mathrm{Ba}, \mathrm{Al}, \mathrm{Ca}, \mathrm{Mg}$ salt
Black residue	No inference

IV. Cobalt Nitrate Test:- To the white residue is obtained in charcoal cavity then added a drop of cobalt nitrate solution and heat in an oxidizing flame to get the following inferences.

	Observation
Green residue	Inference
Blue residue	Zn salt
Pink residue	Al salt

V. Borax Bead Test:- The test is applicable only for the coloured salt heat a crystal of borax ($\mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} .10 \mathrm{H}_{2} \mathrm{O}$) on a clean Pt. -wire loop till a transparent glassy mass is obtained. Touch this glassy mass with coloured mixture and again heated in an oxidizing flame.

Observation	Inference
Pink bead	Mn salt
Yellow when hot and cold	Fe salt
Deep blue bead	Co salt
Reddish brown when cold	Ni salt
Green when hot, blue when cold	Cu salt
Dark green bead	Cr salt

VI. Flame Test:- Mix a pinch of mixture with conc. HCl and dipped the loop of Pt-wire in it and put the loop at the base of a non luminous flame of the burner and observe the colour of the flame to get the following inferences.

	Observation
Brick red flame	Ca salt
Grassy green flame	Ba salt
Crimson red flame	Sr salt

VII. Dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ Test:- Mix few ml of $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a pinch of given mixture and note the reaction.

Observation	Inference
Brown gas which turns FeSO_{4} solution black $-\mathrm{No}_{2}$ gas	No_{2}
With brisk effervescence colourless, odourless gas which	$\mathrm{CO}_{3}{ }^{2-}$
turns lime water milky	
Rotten egg smell gas with no colour	S^{2-}
Colourless gas which turns dichromate paper green	$\mathrm{SO}_{3}{ }^{2-}{\text { or } \mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}}^{\text {No action with dil. } \mathrm{H}_{2} \mathrm{SO}_{4}}$
	$\mathrm{CO}_{3}{ }^{2-}, \mathrm{S}^{2-}, \mathrm{SO}_{3}{ }^{2-}, \mathrm{S}_{2} \mathrm{O}^{2-}$ and
$\mathrm{NO}_{2}{ }^{-}$are absent	

VIII. KMnO_{4} Test:- From the solution, boil off all the gases and mix 2 drops of KMnO_{4} solution and note the observation.

Observation	Inference
Pink colour is discharged with a evolution of a gas	$\mathrm{OX}^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-}$or I^{-}
Pink colour is discharged without evolution of any gas	NO_{2}^{-}
Pink colour is not discharged	$\mathrm{NO}_{2}{ }^{-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-} \mathrm{I}^{-}$and OX^{2-} are
absent	

IX. Conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ Test:- With about 5 ml conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$, heat a pinch of given mixture and not the change.

Observation	Inference
Brown gas which becomes dense by mixing copper turning Pungent smelling, colourless gas which gives dense white fumes with ammonia - HCl Brown gas, which is not affected by mixing copper turning and turns starch paper yellow $-\mathrm{Br}_{2}$ gas Violet gas which turns starch paper blue $-I_{2}$ gas Vinegar smell gas $-\mathrm{CH}_{3} \mathrm{COOH}$ No reaction with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$	$\mathrm{NO}_{3}{ }^{-}$present Cl^{-}may be absent Br^{-}present l' present $\mathrm{CH}_{3} \mathrm{COO}^{-}$present $\mathrm{CO}_{3}{ }^{2-}, \mathrm{S}^{2-}, \mathrm{SO}_{3}{ }^{2-}$, $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}, \mathrm{Cl}^{-}, \mathrm{Br}^{-1}$, $\mathrm{NO}_{3}{ }^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$are absent.

2. Wet Tests for Anions or Acid radicals:- These are the wet tests as the mixture is treated in the form of its water extract (WE) for sodium carbonate extract (SE) with the reagents.

Test for $\mathrm{CO}_{3}{ }^{2-}$

Experiment	Observation	Inference
I. Add about 5 ml distilled water to a small amount of mixture, shake and filtered. II. To one part of filtrate mix few ml of dil. HCl . III. Pass the gas evolved through the lime water. IV. Mix few drops of MgSO_{4} solution to the portion of filtrate. V. For insoluble $\mathrm{CO}_{3}{ }^{2-}$ To the residue add few drops of dilute HCl	A. Residue B. Filtrate Brisk effervescence with the evolution of colourless gas. Turns milky White ppt. formed Brisk effervescence with the evolution of colourless, odourless gas.	For insoluble $\mathrm{CO}_{3}{ }^{2-}$ in residue soluble $\mathrm{CO}_{3}{ }^{2-}$ in filterate Soluble $\mathrm{CO}_{3}{ }^{2-}$ present. Soluble $\mathrm{CO}_{3}{ }^{2-}$ Confirmed Soluble $\mathrm{CO}_{3}{ }^{2-}$ Confirmed. Insoluble $\mathrm{CO}_{3}{ }^{2-}$ Confirmed

Test for Sulphide ion, $\left(\mathrm{S}^{2-}\right)$:-

Experiment	Observation	Inference
1. To S.E. add to drops of sodium nitroprusside solution.	Purpul Colour	S^{2-} confirmed
2.To S.E. add 2-3 drops of acetic acid and lead acetate solution Black ppt.	S^{2-} confirmed	

[^0]| Experiment | Observation | Inference |
| :---: | :---: | :---: |
| 1. To the 2-3 drops of SE , add | | |
| few drops of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and | | |
| few drops of Potassium | | |
| dichromate solution. | Green colour obtained | Sulphite ion confirmed |
| 2.To SE , add 2-3 drops of BaCl_{2}
 solution. | White ppt. which on
 treatment with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$
 to give SO_{2} gas | $\mathrm{SO}_{3}{ }^{2-}$ confirmed |

Test for Thiosulphate ion $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$:-

Experiment	Observation	Inference
1. To SE , add few drops of freshly prepared FeCl_{3}	Violet or purple colour which fades on standing	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ confirmed
2. Add few drops of AgNO_{3} solution to SE.	White ppt. changing to yellow, orange, brown and finally black	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ confirmed

Test for nitrite ion, $\left(\mathrm{NO}_{2}{ }^{-}\right)$:-

Experiment	Observation	Inference
1. To the water extract add 2-3		
drops of ferrous sulphate solution.	Black colour	$\mathrm{NO}_{2}{ }^{-}$confirmed
2.To water extract add 2-3 drops of diphenylamine. 3. Add dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a pinch of mixture. Boil off gas evolved and mix 2 drops of KMnO_{4} solution.	Deep blue colour	$\mathrm{NO}_{2}{ }^{-}$confirmed

Confirmatory tests or wet tests or acid radicals which do not react with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$ like $\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{CH}_{3} \mathrm{COO}^{-}$, oxalate ion

Test for Nitrate ion $\left(\mathrm{NO}_{3}{ }^{-}\right)$:-

Experiment	Observation	Inference
1. Add few drops of conc.	Dark brown fumes of NO_{2} gas	$\mathrm{NO}_{3}{ }^{-}$confirmed
$\mathrm{H}_{2} \mathrm{SO}_{4}$ to a pinch of	evolved	
mixture, boil and then		
add few copper turnings.		
2. Ring test:- To the WE		
add few drops of freshly		
prepared FeSO solution.		
Shake and add few drops		
of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ along the junction a dark brown		
side of test tube.		

Test for Chloride ion (Cl^{-}):-

Experiment	Observation	Inference
1. To WE add AgNO_{3} solution. 2. Chromyl Chloride test:Heated a pinch of mixture with solid $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ and few ml of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ pass the red vapours through NaOH solution. To the yellow colour solution add dil. Acetic acid and lead acetate solution.	White ppt. soluble in $\mathrm{NH}_{4} \mathrm{OH}$. Red vapours of Chromyl Chloride are formed Yellow colouration Yellow ppt. soluble in NaOH solution	Cl^{-}present Cl^{-}present Cl^{-}present Cl^{-}present

Test for Bromide ion (Br^{-}) :-

Experiment	Observation	Inference
1. CS_{2} or CCl_{4} Test:- To the	Orange coloure in CS_{2} or CCl_{4}	Br"confirmed
WE add 4-5 drops of CS_{2}	layer	
or CCl_{4} and few ml of		

freshly prepared chlorine water and shake thoroughly.		
2. Add few drops of AgNO_{3} solution to the WE.	Light yellow ppt. partially soluble in $\mathrm{NH}_{4} \mathrm{OH}$	Br"confirmed

Test for iodide (I') :-

Experiment	Observation	Inference
1. CS_{2} or CCl_{4} Test:- To the WE or SE after boiling off CO_{2} by heating with dilute HNO_{3}, add few drops of CS_{2} or CCl_{4} and then add freshly prepared chlorine water with constant shaking. 2. To the WE or SE after boiling off CO_{2}, add AgNO_{3} solution.	Purple violet colour in CCl_{4} layer Yellow ppt. insoluble in $\mathrm{NH}_{4} \mathrm{OH}$	IConfirmed

Wet Test for Acetate $\left(\mathrm{CH}_{3} \mathrm{COO}^{-}\right)$:-

Experiment	Observation	Inference
1. Ester test:- Heat a pinch		
of mixture with small	A fruity smell of ethyl acetate	$\mathrm{CH}_{3} \mathrm{COO}^{-}$confirmed
conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and few drops of ethyl alcohol.		
2. FeCl_{3} Test:- To the WE		
add 2-3 drops of neutral	Blood red colour	$\mathrm{CH}_{3} \mathrm{COO}^{-}$confirmed
FeCl_{3} solution.		

Wet Test for oxalate ion :-

Experiment	Observation	Inference
1. Heat a pinch of mixture	A mixture of CO and CO_{2}	Oxalate ion may be

with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$
2. To a part of SE , add dil. acetic acid. Boil of all gases and then cool. Add few ml of CaCl_{2} solution.
3. Filter the solution and wash the ppt. with distilled water and extract the ppt. with about 1 ml of dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ added about two drops of KMnO_{4} solution.
evolved
White ppt.

Pink colour of KMnO_{4} discharge with evolution of CO_{2}
present
Oxalate ion confirmed

Oxalate ion confirmed
\square
solution taken in china dish.
3. Lead Acetate Test:- Boil S.E. will dil. Acetic acid in a test tube and then add lead Acetate Solution.

White ppt.
$\mathrm{SO}_{4}{ }^{2-}$ confirmed

Test for Borate ion $\left(\mathrm{BO}_{3}{ }^{3}\right)$:-

Experiment	Observation	Inference		
1. In a few drops of ethyl alcohol add few drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ to a pinch of mixture taken in china dish. Heat the mixture and ignite the vapours so evolved.	A green edged flame	$\mathrm{BO}_{3}{ }^{3-}$ confirmed		
2. Turmeric paper Test:-	Turmeric paper turns			
Dissolve few mg of the mixture in few drops of dil. HCl. Dip turmeric paper in the above solution and wrap it around the neck of semi - micro tube containing	BO_{3}^{3-} confirmed			
water. Boil the water to				
dry the turmeric paper.			\quad	

Test for Phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$:-

Experiment	Observation	Inference
1. Megnesia mixture:- To a		
part of SE add dil. HCl,	White ppt.	$\mathrm{PO}_{4}{ }^{3}$ confirmed
boil of CO_{2} gas and cool.		
Add $\mathrm{NH}_{4} \mathrm{OH}$ solution till alkaline and then add		

few drops of magnesia mixture (equal amounts of $\mathrm{MgSO}_{4}, \quad \mathrm{NH}_{4} \mathrm{Cl}$ and $\mathrm{NH}_{4} \mathrm{OH}$ solution).
2. Ammonium Molybdate Test:- Add few drops of conc. HNO_{3} to a part of mixture, boil and then add a pinch of solid ammonium molybdate solution, boil again.
3. Wet Test for Cations or Basic radicals:- The classification of cations in the six groups is based upon the fact that the radicals belonging to a particular group are precipitated by some specific group reagent. A group reagent is that which have following properties:-

1) For the complete precipitation of the cations of particular group, it should be effective.
2) The resulting precipitate must easily dissolve in acid to get the cation in the form of solution.
3) For a specific group cation, it should be specific.

The scheme for separating cations or basic radicals into six analytical groups is shown as follows:-

	Group I	IIA	IIB	III	IV	V	VI
Cations	$\begin{gathered} \mathrm{Ag}++^{\prime} \\ \mathrm{HG}_{2}{ }^{2+} \\ \mathrm{Pb}^{2+} \end{gathered}$	$\begin{gathered} \mathrm{Hg}^{2+}, \mathrm{Pb}^{2+} \\ \mathrm{Bi}^{3+}, \mathrm{Cu}^{2+} \\ \mathrm{Cd}^{2+} \end{gathered}$	$\begin{aligned} & \mathrm{As}^{3+} \\ & \mathrm{Sb}^{3+} \\ & \mathrm{Sn}^{2+} \end{aligned}$	$\begin{gathered} \mathrm{Fe}^{3+}, \\ \mathrm{Al}^{3+}, \\ \mathrm{Cr}^{3+} \end{gathered}$	$\begin{gathered} \mathrm{Co}^{2+}, \mathrm{Ni}^{2+} \\ \mathrm{Mn}^{2+} \\ \mathrm{Zn}^{2+} \end{gathered}$	$\begin{gathered} \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+} \\ \mathrm{Ca}^{2+} \end{gathered}$	$\begin{gathered} \mathrm{Mg}^{2+} \\ \mathrm{Na}^{+}, \mathrm{K}^{+} \\ \mathrm{NH}_{4}^{+} \end{gathered}$
Group Reagent	Dil. HCl	$\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil. HCl	$\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil. HCl	$\mathrm{NH}_{4} \mathrm{OH}$ in presence of $\mathrm{NH}_{4} \mathrm{CL}$	$\mathrm{H}_{2} \mathrm{~S}$ gas in presence of dil. HCl	$\begin{gathered} \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Co}_{3} \\ \text { in } \\ \text { presence } \\ \text { of } \mathrm{NH}_{4} \mathrm{Cl} \\ \& \mathrm{NH}_{4} \mathrm{OH} \end{gathered}$	No group reagent

Original solution (OS) :- original solution is clear solution of the mixture which is prepared

(i) By using distilled water (DW) and dil. HCl
 Or

(ii) By using distilled water and conc. HCl

Wet Test for group -I Cations :- To the OS, add to drops of dil. HCl. If precipitate appears, then add more HCl to make precipitation complete. Centrifuge and wash the ppt. with distilled water and reserve the filtrate for the analysis of Group II cations.

White ppt. - for Group I cation
Filtrate or supernate - for group II cation
With few ml of distilled water boil the white ppt. and filter.
-ppt. for $\mathrm{Hg}_{2}{ }^{2+}$ and Ag^{+}
Filtrate for Pb^{2+} as PbCl_{2}

ppt. (for $\mathrm{Hg}_{2}{ }^{\mathbf{2 +}}$ and Ag^{+})	Filterate (for $\mathrm{Pb}^{\mathbf{2 +}}$)
With hot water wash the ppt., centrifuge and reject the filtrate. Add few drops of dil. Ammonia solution to the ppt. and centrifuge. Centrifuge :- I- Black residue (for $\mathrm{Hg}_{2}{ }^{2+}$) :- add stannous chloride to the solution of mercurous salt. White ppt. turns gray $-\mathrm{Hg}_{2}{ }^{2+}$ confirmed II- Supernate or filtrate (for Ag^{+}) :- To filtrate add few drops of dil. HNO_{3} -white ppt. $-\mathrm{Ag}^{+}$confirmed	Filtrate is classified into two parts 1) To one part add few drops potassium chromate solution (yellow ppt.) 2) To second part add few drops KI solution (yellow ppt.) $-\mathrm{Pb}^{2+}$ confirmed

Group II :- If Group I cation is present, then take the filterate of Group I and pass $\mathrm{H}_{2} \mathrm{~S}$ gas. To OS add dil. HCl and pass $\mathrm{H}_{2} \mathrm{~S}$ gas.

ppt. - for Group II cations
 Filtrate - for Group III

Ppt - contain $\mathrm{Pb}^{2+}, \mathrm{Hg}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}, \mathrm{As}^{3+} \mathrm{Sb}^{3+}, \mathrm{Sn}^{2+}$ in the form of their sulphide.

Analysis of cation of IIA or II B in the acidic OS after passing $\mathrm{H}_{2} \mathrm{~S}$ gas, the ppt. obtained centrifuge and wash the ppt. with distilled water. For group III reserve the filtrate.

Coloured ppt. - for group II	ppt. for group II	
Mix few ml of yellow ammonium sulphide to the above ppt. shake and warm the content and centrifuge. In a beaker, decant off the liquid portion to the remaining ppt. add 2 ml of yellow ammonium sulphide,	Ppt - for group IIA Filterate - for group IIB Analysis of group II A cations With few ml of dil. HNO_{3} heat the ppt. and centrifuge	
Analysis of group II-B cation:- To the above filtrate add acid dil. HCl to make the solution. Warm the solution and centrifuge to the ppt. mix 2 ml of distilled water and 5 ml conc. HCl and warm. Centrifuge and wash the ppt. with dil. HCl Yellow ppt - for As^{3+} Filterate - for $\mathrm{Sb}^{3+}, \mathrm{Sn}^{4+}$	Residue:- -Black residue for Hg^{2+} With the help of the water wash the residue boil the ppt. with conc. HCl and pinch of potassium chlorate. Boil of cases and then mix SnCl_{2} solution. White ppt. turns grey - Hg^{2+} confirmed	Filterate :- -For $\mathrm{Pb}^{2+}, \mathrm{Bi}^{3+}, \mathrm{Cu}^{2+}$ and Cd^{2+}. Mix few drops of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and transfer the contains to china dish. Evaporate till few drops remain, cool and add $2 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}$ and centrifuge

Coloured ppt.- for Group II	Filterate - Group III
Test for $\mathrm{As}^{3+}:-$	Ppt for Pb^{2+}

Wash the ppt. with hot water boil with few ml conc. HNO_{3} and then mix few drops of ammonium molybdate.
Yellow ppt. - As ${ }^{3+}$ confirmed
Test for Sb^{3+} and Sn^{3+}
The filterate is divided into two parts :-

1) Mix few mg of oxalic acid to one part and pass $\mathrm{H}_{2} \mathrm{~S}$ gas.
-orange ppt. - Sb^{3+} confirmed
2) Warm the second part with a piece of Al metal. Centrifuge if any ppt. reject them. To filterate add 5 ml HgCl_{2}.

- White ppt. $-\mathrm{Sn}^{4+}$ confirmed

Filterate for $\mathrm{Bi}, \mathrm{Cu}, \mathrm{Cd}-$
Wash the ppt. with $\mathrm{H}_{2} \mathrm{O}$ reject is washing mix few drops of conc. Ammonium acetate and heat with shaking ppt. dissolve mix few drops potassium chromate solution and few drops of acetic acid.

Yellow ppt. - Pb^{2+} confirmed
Tests for $\mathrm{Bi}, \mathrm{Cu}, \mathrm{Cd}$:-
Add conc. Ammonia drop wise (in excess)

Centrifuge :-
(i) Ppt for Bi^{3+}
(ii) Filterate for $\mathrm{Cu}^{2+}, \mathrm{Cd}^{2+}$

In the ppt., add few drops of sodium stannite solution
It turns black - Bi^{3+} confirmed For Cu^{2+} and Cd^{2+} :-
Divide the filterate in two parts.

1) Mix dil. HCl and few drops of potassium ferrocyanide solution to one part of the filterate
Reddish colour - Cu^{2+} confirmed
2) Mix KCN solution to the second part of the filterate till blue colour disappears

Pass $\mathrm{H}_{2} \mathrm{~S}$ gas - yellow ppt.

$-\mathrm{Cd}^{2+}$ confirmed

Analysis of group III cations ($\mathrm{Fe}^{3+}, \mathrm{Cr}^{3+}, \mathrm{Al}^{3+}$)
From filterate of group - II, boil off $\mathrm{H}_{2} \mathrm{~S}$ gas mix few drops of conc. HNO_{3}, boil and cool the content. Now mix solid $\mathrm{NH}_{4} \mathrm{Cl}$ again, boil and cool. Then add $\mathrm{NH}_{4} \mathrm{OH}$ solution in excess.

- Ppt for group III

- Filterate for group IV

Mix 2 ml distilled water and few mg sodium peroxide to the ppt. Boil, cool and centrifuge.

Analysis of Group IV cations ($\mathrm{Co}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Mn}^{2+}, \mathrm{Zn}^{2+}$)
To the filterate of group III, mix $\mathrm{NH}_{4} \mathrm{OH}$ solution in excess and pass $\mathrm{H}_{2} \mathrm{~S}$ gas.
Centrifuge
-ppt for group IV

- filterate for group V

Mix the ppt. with HCl , Shake and centrifuge

Black ppt. for Co^{2+} and Ni^{2+}	Filterate for $\mathbf{M n}^{2+}$ and Zn^{2+}
Take the ppt. to china dish, mix conc. HCl and a crystal of KClO_{3} Evaporate the solution till dryness and observe the colour of the residue.Boil off $\mathrm{H}_{2} \mathrm{~S}$ gas, cool and add few ml saOH solution and then add few drops of $\mathrm{H}_{2} \mathrm{O}_{2}$. Heat the $-\quad$ Blue or green colour - for	Dark brown ppt. (for Mn^{2+}):-

	lour - for Ni^{2+} mix few ml of ion into two For Mix few drops of dimethyl gloxime and $\mathrm{NH}_{4} \mathrm{OH}$ to second part of the solution - Bright red colour - Ni^{2+} confirme d	Ppt. divide into two parts :- 1. Mix few ml conc. HNO_{3} and pinch of PbO_{2} to one part of ppt. Boil, cool and dil. with distilled water. - Pink colour - Mn^{2+} confirmed 2. Borax bead test:Apply borax bead test to the second portion of ppt. - Pink bead - Mn^{2+} confirmed	Filterate divide into two parts:- 1. Mix few drops of dil. HCl and potassium ferrocyanide to one part of the filterate - Bluish white ppt. - Zn^{2+} confirmed 2. To the second part of the solution of filterate pass $\mathrm{H}_{2} \mathrm{~S}$ gas - Dirty white ppt. - Zn^{2+} confirmed

Analysis of Group V Cation ($\mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ca}^{2+}$):-

From filterate of group IV, boil off $\mathrm{H}_{2} \mathrm{~S}$ gas mix solid ammonium nitrate. Boil the content, cool and then mix $\mathrm{NH}_{4} \mathrm{Cl}$ and few drops of $\mathrm{NH}_{4} \mathrm{OH}$. Now mix Ammonium carbonate solution and scratch the sides of test tube for few minutes.

Centrifuge:-

- white ppt. for group V
- filterate for group VI

The above white ppt. dissolved in small amount of acetic acid and boil off CO_{2} gas, cool and mix few drops of Pot. Chromate and then centrifuge.

Residue:-

- Yellow ppt.
- Ba^{2+} confirmed

Wash the ppt. with water and reject the washings.
Flame test :- Apply flame test with the ppt.

- Grassy green flame
- Ba^{2+} confirmed

Filterate :- For Sr^{2+} and Ca^{2+}

To the filterate mix ammonia dropwise and then mix an excess of ammonium sulphate. Boil, cool and centrifuge. If no white ppt. Sr^{2+} is absent.

White ppt. :Sr^{2+} confirmed Flame test :Apply flame test with the ppt. - Crimson red flame - Sr^{2+} confirmed	Filterate for Ca^{2+} ion:- To above filterate mix ammonium oxalate solution and wait for 23 minutes. White ppt. - Ca^{2+} confirmed Flame test :- Apply flame test with the ppt. - Brick red flame - Ca^{2+} confirmed

- Ca^{2+} confirmed

Analysis of Group VI - $\left(\mathrm{Mg}^{2+}, \mathrm{NH}_{4}{ }^{+}\right)$:-

From group V heat the filterate to dryness, cool and mix few drops of conc. HNO_{3}. Again heat to dryness and dissolve the residue in few ml of distilled water.

Test for Mg^{2+}	Test for NH_{4}^{+}
Mix few drops of Magneson reagent (an alkaline solution of p-nitrobenzeneazo resorcinol - a dye) to the above solution. Sky blue ppt. - Mg^{2+} confirmed	1. Mix strong solution of caustic soda (NaOH) to a pinch of mixture. - Pungent smell, colourless gas which turns turmeric paper brown. - $\mathrm{NH}_{4}{ }^{+}$confirmed 2. Mix NaOH solution to the pinch of mixture, heat and add Nessler's reagent $\left(\mathrm{K}_{2} \mathrm{Hgl}_{4}\right)$

Section - B (Physical)

EXPERIMENT - 1

AIM:- To determine the strength and normality of given acid solution (approx.
$\frac{N}{10} \mathrm{HCl}$) by titrating it against standard 0.5 NaOH solution conductometrically.

THEORY:-

Substances which allow electricity to pass through them are known as conductors. Conductors are divided into two classes:-
i. Metallic or electronic conductors
ii. Electrolytic conductors

The conductance of the solution of an electrolyte depends upon following factors:-
i. Nature of the electrolyte
ii. Concentration of the solution
iii. Speed of the ion

In conductometric titrations, the conductance of electrolytic solution are measured with the help of conductometer.

When we titrate the strong acid with strong base, in the starting the conductance is high and then decreases till end point end after end point the conductance is increases.

PRINCIPLE:-

The basic principal of such titrations is that when the addition of solution of one electrolyte to another electrolyte solution, ions of latter solution are replaced by those of the former and hence the conductance changes. In this titration, the mixing of NaOH to HCl will cause the conductivity change due to replacement of highly mobile H^{+}ions by lower mobile Na^{+}ions. A particular type of curve is obtained which intersect at a point no age equilvalence point or end point. During the titration of HCl solution against NaOH solution, the following reaction takes place:-
CHEMICAL REACTION $\mathrm{H}^{+} \mathrm{Cl}^{-}+\mathrm{Na}^{+} \mathrm{OH}^{-} \rightarrow \mathrm{Na}^{+} \mathrm{Cl}^{-}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
When the solution of HCl is to be titrated against NaOH , the acid solution is taken in the beaker and NaOH solution is taken in the burette. The conductance of the acid solution is noted initially and after each successive mixing of small amount of NaOH solution, the change in conductance is recorded and plotting the graph. In the beginning the conductance of the acid is very high because it contains highly mobile H^{+}ions. As NaOH solution is added to HCl solution, highly mobile H^{+}ions are replaced by slow mobile Na^{+} ions and conductance of the solution keep on decreasing till the end point is reached. After the end point is reached, the addition of NaOH brings the fast moving OH^{-}ions and the conductance again start increasing.

CHEMICAL USED:-

1. Standard NaOH

2. Approx. $\frac{N}{10} \mathrm{HCl}$ solution

APPARATUS USED:-

1. Conductometer
2. Conductivity cell
3. Beaker
4. Burette
5. Pipette

PROCEDURE:-

1. Take a definite volume (20 ml) of given 0.1 N HCl in a beaker. Adding distilled water so that the electrodes of conductivity cell completely dip in the solution.
2. Wash the conductivity cell with distilled water, dip in HCl solution and connect it to conductometer.
3. Noted the conductance.
4. Rinse and fill the burette with 0.5 NaOH solution.
5. Now mix 0.5 ml of NaOH solution from the burette into beaker containing HCl solution.
6. After each addition, stir the contents thoroughly and note down the conductance.
7. Repeat the procedure.

OBSERVATION:-

Volume of given acid solution taken $=20 \mathrm{ml}$
Normality of standard $\mathrm{NaOH}=\frac{N}{2}(0.5 \mathrm{~N})$

Sr. No.	Volume of NaOH Added (ml)	Observed conductance $\left(\right.$ ohm $\left.^{-1}\right)$
1.	0.0	
2.	0.5	
3.	1.0	
4.	1.5	
5.	2.0	
6.	2.5	
7.	3.0	

8.	3.5	
9.	4.0	
10.	4.5	
11.	5.0	
12.	5.5	
13.	6.0	
14.	$\ldots \ldots$.	
15.		

CALCULATION:-

Suppose volume of NaOH required for neutralization $=\mathrm{V}_{2} \mathrm{ml}$
Plot volume of NaOH (in ml) along x -axis, and the observed conductance along y-axis.

By using normality equation,

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
& (\mathrm{HCl}) \quad(\mathrm{NaOH}) \\
& \mathrm{N}_{1} \times 20=0.5 \times \mathrm{V}_{2}
\end{aligned}
$$

$\therefore \mathrm{N}_{1}$ is normality of given $\mathrm{HCl}=\frac{0.5 \times V_{2}}{20}=y$
\therefore Strength of $\mathrm{HCl}=$ Normality \times eq. wt. of HCl

$$
\begin{aligned}
& N_{1} \times 36.5=y \times 36.5 \\
& =W g / \text { litre }
\end{aligned}
$$

PRECAUTIONS:-

1. The apparatus should be rinsed and cleaned properly before use.
2. After each mixing of the NaOH , the solution should be thoroughly stirred.
3. Rinse the electrodes of the conductivity sell thoroughly(with the given acid) before starting the experiment
4. A strong solution of NaOH should be taken, the solution of NaOH should be about five times stronger then HCl solution.

EXPERIMENT - 2

AIM:- To determine the strength of given weak acid $\left(\mathrm{CH}_{3} \mathrm{COOH}\right)$ solution by titrating it against standard base (NaOH) solution conductometrically.

THEORY:-

In conductometric titrations the conductivity of a solution depends upon the number of ions and their conductance. The solution of electrolyte are used to find out the conductance with the help of conductometer. During the titrations the nature and sometimes concentration of ionic reactants is changed. This is because the conductance of the solution is changed. PRINCIPLE:-

The principle of such titration is the substitution of ions of one conductance by ions of another conductance. Therefore, by the addition of definite volume of the solution of one electrolyte into the fixed volume of the solution of another electrolyte the conductance change is determined.
In case of weak acid (like $\mathrm{CH}_{3} \mathrm{COOH}$) against strong base (NaOH), the curve shape is found different.

CHEMICAL REACTION:-

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{Na}^{+}+\mathrm{OH}^{-} \xrightarrow{-\mathrm{H}_{2} \mathrm{O}} \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{Na}^{+}+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})
$$

At the end point, an abrupt change occurs in the slope of the conductance titrant volume graph. Before and after the end point the curve segments are linear.

The conductance of the acid initially is very low because of low ionization of weak acetic acid. With the addition of more and more NaOH , the conductance keeps on increasing, as the number of ions in solution increasing. But the increase is slow due to low mobility of $\mathrm{CH}_{3} \mathrm{COO}^{-}$ions. After the complete neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$, further addition of NaOH results in increase in the conductance of the solution due to increase in number of high mobile Na^{+}and OH^{-}ions.

The point of intersection tells the exact volume of NaOH used for complete neutralization.

CHEMICAL USED:-

1. Standard NaOH solution
2. $\mathrm{CH}_{3} \mathrm{COOH}$ solution

APPARAUTS USED:-

1. Beaker
2. Pipette
3. Burette
4. Conductometer
5. Conductivity cell

PROCEDURE:-

1. Take twenty ml of given $\mathrm{CH}_{3} \mathrm{COOH}$ solution in a beaker. Dilute the solution so that conductivity cell dips in the solution.
2. Wash the conductivity cell with distilled water and connect it to conductometer.
3. Dip the cell in acetic acid and find out the conductance.
4. From the burette, mix 0.5 ml an of NaOH solution into $\mathrm{CH}_{3} \mathrm{COOH}$ solution with shaking and note down the observed conductance.
5. Repeat the above procedure on recording the observed conductance.
6. Plot the graph between the observed conductance and volume of NaOH mixed and find out the volume of NaOH required complete neutralization.

OBSERVATION:-

Volume of given acetic and solution taken $=20 \mathrm{ml}$
Normality of NaOH solution $=0.5 \mathrm{ml}$

S.no.	Volume of NaOH Added (ml)	Observed conductance $\left(\right.$ Ohm $^{\mathbf{- 1}}$)
1.	0.0	
2.	0.5	
3.	1.0	
4.	1.5	
5.	2.0	
6.	2.5	
7.	3.0	

8.	3.5	
9.	4.0	
10.	4.5	
11.	$\ldots \ldots$	
12.	$\ldots \ldots$	

CALCULATION:-

Suppose volume of NaOH required for neutralization $=\mathrm{V}_{2} \mathrm{ml}$
The values of observed conductance are plotted along y-axis and the values of volume of NaOH added along x-axis.

By using normality equation,

$$
\begin{gathered}
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
\text { (acetic acid) } \quad(\mathrm{NaOH}) \\
\mathrm{N}_{1} \times 20=0.5 \times \mathrm{V}_{2} \\
\mathrm{~N}_{1}=\frac{0.5 \times V_{2}}{20}
\end{gathered}
$$

N_{1} i.e. normality of acetic acid,
\therefore Strength of acetic acid $\quad=\quad$ Normality \times eq. wt.

$$
=\quad N_{1} \times 60 \quad \text { (eq. wt. of acetic acid }=
$$

60)

$$
=\quad W \mathrm{~g} / \text { litre }
$$

PRECAUTIONS:-

1. The apparatus used should be rinsed and clean properly.
2. After each mixing of the NaOH , the solution should be thoroughly stirred.
3. A strong solution of NaOH should be taken so that during titration there is not much change in the volume.
4. Before starting the experiment rinse the electrodes of the conductivity cell thoroughly with the given acid.
5. The temperature should be kept constant during the experiment.

EXPERIMENT - 3

AIM:- To determine the normality and strength of given dibasic acid (oxalic acid) solution by titrating against standard NaOH solution conductometrically.

THEORY:-

In case of dibasic acid like oxalic acid vs strong base, the shape of the curve is found different. In oxalic acid, the two dissociation exists one after the other as the first dissociation is similar to that of strong acid and second one is similar to that of a weak acid like acetic acid. The titration curve shows two well marked break points.
CHEMICAL REACTION:-
Step-1 $\quad \mathrm{COOH}(\mathrm{aq})+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
I
I
COOH COOH
Step - 2
$\mathrm{COONa}(\mathrm{aq})+\mathrm{Na}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{COONa}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}$
I
I
COOH
COONa

CHEMICAL USED:-

1. Oxalic acid solution
2. Standard NaOH solution

APPARATUS USED:-

1. Beaker
2. Pipette
3. Buretee
4. Conductometer
5. Conductivity cell

PROCEDURE:-

1. Take 20 ml of oxalic acid in a beaker. Dilute the solution so that conductivity cell dips in the solution.
2. Wash the conductivity cell with distilled water and connect it to the conductometer.
3. Dip the cell in the oxalic acid and find out the conductance.
4. From the burette, mix standard NaOH solution into oxalic acid solution with shaking and note down the observed conductance.
5. Repeat the procedure on recording the observed conductance.

OBSERVATION AND CALCULATION:-

Volume of oxalic acid taken $=20 \mathrm{ml}$
Normality of $\mathrm{NaOH}=\frac{N}{10}$
Suppose the volume of NaOH required for neutralization $=\mathrm{V} \mathrm{ml}$ By using normality equation

$$
\begin{gathered}
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
\text { (oxalic acid) } \quad(\mathrm{NaOH}) \\
\mathrm{N}_{1} \times 20=.1 \times \mathrm{V}
\end{gathered}
$$

Strength $(\mathrm{g} /$ litre $)=\frac{V}{200} \times 45=x$ g/litre $\quad \mathrm{N}_{1}=\frac{V}{200}$
eq. wt. of oxalic acid $=$

45

PRECAUTIONS:-

1. The temperature should be kept constant during the experiment.
2. The apparatus used should be clean.
3. Rinse the electrodes of the conductivity cell thoroughly with the given acid.

EXPERIMENT-4

AIM:- To determine the solubility and solubility product of a given sparingly soluble salt conductometerically.

THEORY:-

Sparingly soluble salts are those which are very less soluble in solvent. When such salt is put into water, the saturated solution is obtained.
At a particular temperature the maximum amount of substance which forms the saturated solution in a fixed amount of solvent is called its solubility. For PbSO_{4},

$$
\begin{array}{ll}
\mathrm{PbSO}_{4} \rightleftharpoons \mathrm{~Pb}^{2+}+\mathrm{SO}_{4}^{2-} & \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{2}+\right]\left[\mathrm{SO}_{4}^{2-}\right] & \mathrm{K}_{\mathrm{sp}}=\mathrm{K} \times\left[\mathrm{PbSO}_{4]}\right]
\end{array}
$$

The saturated solution of PbSO_{4} is prepared. The specific conductance is determined by multiplying the observed conductance with cell constant. At infinite dilution the equivalent conductance is determined by Kohlrausch's law.

$$
\begin{aligned}
\lambda_{0} & =\lambda_{0}\left(P b^{2+}\right)+\lambda_{0}\left(S O_{4}^{2-}\right) \\
& =73+79.8 \\
& =152.8 \text { at } 298 \mathrm{~K}
\end{aligned}
$$

By using the following relation, the solubility ' S ' of the sparingly soluble salt are obtained

$$
\begin{gathered}
\mathrm{S}=\frac{1000 \times k}{\lambda_{0}} \text { g equival/litre } \\
=\frac{1000 \times k \times \text { equivalent weig ht }}{\lambda_{0}} g / \text { litre } \\
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{++}\right]\left[\mathrm{SO}_{4}^{-}\right] \\
\mathrm{K}_{\mathrm{sp}}=\mathrm{S} \times \mathrm{S} \\
\mathrm{~K}_{\mathrm{sp}}=\mathrm{S}^{2} \text { in case of } \mathrm{PbSO}_{4} \\
\mathrm{~S}=\sqrt{K_{s p}}
\end{gathered}
$$

CHEMICAL USED:-

1. KCl
2. PbSO_{4}
3. Conductivity water

APPARATUS USED:-

1. Conductometer
2. Conductivity bridge
3. Conductivity cell
4. Pipette
5. Burette
6. Beaker
7. Connecting wires

PROCEDURE:-

It occurs in two steps:-
Step-1:- Determination of cell constant of cell
Step-2:- Determination of solubility and solubility product of the given sparingly soluble salt
Step-1:- Determination of cell constant of cell
I. Prepare $\frac{N}{10} \mathrm{KCl}$ solution by dissolving 7.450 g KCl in distilled water or conductivity water to prepare 100 ml solution.
II. In a beaker transfer 50 ml of this solution and dip the conductivity cell.
III. Connect the electrodes of cell to conductometer marked "cell".
IV. The observed conductance should be recorded.
V. Repeat the procedure by taking KCl solution with normality $\frac{N}{50}, \frac{N}{100}$ etc.

VI . From ratio of specific conductance to observed conductance find out the cell constant.
Step-2:- Determination of solubility:-
In 100 ml distilled water boil 2 gm PbSO 4 for $5-10$ minutes. To determine the conductance cool, filter and use the filterate by dipping conductivity cell. Repeat the experiment by taking fresh sample of saturated solution of PbSO_{4}.

OBSERVATION AND CALCULATION:-

I. Determination of cell constant

Room temperature $=$ \qquad $\mathrm{t}^{\circ} \mathrm{C}$

Sr.	Concentration	Observed No.	(KCI)	Cell
Conductance	Mean			
Constant				

1.	$\frac{N}{10}$	$\ldots . o h m-1$		
2.	$\frac{N}{50}$	$\ldots . o h m-1$		
3.	$\frac{N}{100}$	$\ldots . o h m-1$		

$$
\begin{aligned}
& \quad \text { Mean value }=\ldots \mathrm{ohm}^{-1} \\
& \text { Cell constant }=\frac{\text { Specific conductance }}{\text { observed conductance }}\left(\mathrm{cm}^{-1}\right)
\end{aligned}
$$

II. Determination of solubility and solubility product

Cell constant = cm^{-1}

S.No.	Observed conductance	Specific conductance $\mathbf{k}=$ cell constant \times observed conductance
$\begin{aligned} & 1 . \\ & 2 . \\ & 3 . \end{aligned}$ohm ${ }^{-1}$ \qquad ohm $^{-1}$ ohm ${ }^{-1}$ \qquad Constant value of $\mathrm{K}=$...

By using the relation

$$
\begin{gathered}
S=\frac{1000 \times k}{\lambda_{0}} g \text { equivalent } / \text { litre } \\
\frac{1000 \times k \times \text { equivalent weight }}{\lambda_{0}} g / \text { litre }
\end{gathered}
$$

Equivalent weight of $\mathrm{PbSO}_{4}=\frac{\text { Molecular weig } h t}{2}=\frac{207+32+64}{2}=\frac{303}{2}=151.5$

$$
\begin{aligned}
\Lambda_{0}\left(\mathrm{PbSO}_{4}\right) & =\Lambda_{0\left(\mathrm{~Pb}^{2+}\right)}+\Lambda_{0\left(\mathrm{so}_{4}{ }^{2-}\right)} \\
& =73+79.8
\end{aligned}
$$

$$
=152.8 \text { ohms at } 298 \mathrm{~K}
$$

By putting the values of specific conductance, equivalent wt., equivalent conductance, we can find out the value of S (solubility of sparingly soluble salt)

$$
\begin{gathered}
\mathrm{K}_{\mathrm{sp}}=\left[\mathrm{Pb}^{++}\right]\left[\mathrm{SO}_{4}^{--}\right] \text {i.e. } \mathrm{S} \times \mathrm{S}^{2} \\
\mathrm{~K}_{\mathrm{sp}}=\mathrm{S}^{2} \text { in case of } \mathrm{PbSO}_{4} .
\end{gathered}
$$

PRECAUTIONS:-

I. To save the device from the damage due to voltage fluctuations, a voltage stabilizer should be used.
II. Wash the electrodes with the solution which is to be taken in the cell.
III. All solution should be prepared in conductivity water.
IV. Platinized electrodes should be used to improve the sharpness of sound.
V. No change in distance or shapes of electrodes should be made, once the cell constant is determined.
VI. Conductivity measurements are influenced by change of temperature, so these measurement should be made at controlled temperature.

EXPERIMENT - 5

AIM:- To determine the molecular weight of a non-volatile solute by Rast method.

THEORY:-

The rast method is based upon the measurement of depression of freezing point. The molten camphor is used as a solvent. Camphor has a very
high molal depression constant, about 39.7°. Even a very dilute solution of the solute in camphor has the freezing point many degrees below that of pure camphor and for the measurement of the depression of freezing point an ordinary $\left(0.1^{0}\right)$ thermometer is adequate.

This method is used only to those substances which are soluble in camphor and do not react with it chemically, do not the compose below the melting point of camphor.

A known weight of compound is mixed with a known weight of the camphor till a clear homogeneous solution, cooled and then melting point of solid is determined.

By using the formula, the molecular weight M is calculated:-

$$
\mathrm{M}=\frac{K_{f} \times 1000 \times W}{\Delta T \times w}
$$

Where
$\mathrm{W}=$ weight of the compound
$\mathrm{w}=$ weight of camphor
$\Delta \mathrm{T}=$ depression in $\mathrm{M} . \mathrm{Pt}$
$\mathrm{K}_{\mathrm{f}}=$ molal depression constant

CHEMICAL USED:-

1. Liquid paraffin bath
2. Non-volatile solute like naphthalene
3. Resublimed camphor

APPARATUS USED:-

1. $0.1^{\circ} \mathrm{C}$ thermometer
2. Capillary tubes
3. Beaker
4. Thiele's tube
5. Spatula
6. Weight box
7. Iron stand

PROCEDURE:-

I. Preparation of homogeneous mixture
a. Take an ignition tube, dry it and weight it accurately.
b. Mix 0.5 g of powdered camphor into it.
c. Loosely cork the ignition tube and heat it carefully on a low flame until a clear solution is obtained.
d. To ensure complete addition and then allow it to cool to get a solid mixture.

II. Determination of m.pt. of the solid mixture

a. With the help of fine edged spatula, remove the solid mixture from the ignition tube. Powder it and fill it in the capaillary tube.
b. In Thiele's tube determine the m.pt. of this solid mixture.
c. Repeat this procedure with two samples for m.pt. determination.

III. Determination of m.pt. of pure camphor

a. With the help of ether moisten some camphor and powder it carefully in a mortar.
b. By capillary tube method determine its m.pt.
c. Repeat the m.pt. determination with two samples.

OBSERVATION:-

Weight of the ignition tube $=W_{1} g$
Organic compound + weight of ignition tube $=W_{2} g$
Camphor + O.c + weight of ignition tube $=W_{3} g$
Weight of organic compound $=W_{2}-W_{1}=0.05 \mathrm{~g}(\mathrm{~W})$
Weight of camphor $=W_{3}-W_{2}=0.5 \mathrm{~g}(\mathrm{w})$

M.Pt. of solid mixture			M.Pt. of camphor		
Experiment No.	Temperature	Mean	Experiment No.	Temperature	Mean
1.			1.		
2.			2.		
3.		$\mathrm{t}_{1}{ }^{\circ} \mathrm{C}$	3.		$\mathrm{t}_{2}{ }^{\circ} \mathrm{C}$
		$\mathrm{T}_{1}=\mathrm{t}_{1}+$			$\mathrm{T}_{2}=$
		273			$\mathrm{t}_{2}+273$

CALCULATION:-

Molal depression of camphor $\left(\mathrm{k}_{\mathrm{f}}\right)=39.7^{\circ}$
Depression in m.pt., $\Delta T=\left(T_{2}-T_{1}\right)$

Using the formula, $M=\frac{\mathrm{k}_{\mathrm{f}} \times 1000 \times W}{\Delta \mathrm{~T} \times w}$
Using the above relation M , molecular weight of given organic compound.

PRECAUTIONS:-

1. The apparatus used should be clean.
2. The camphor will vapourise during heating if the ignition tube is not corked properly.
3. By giving rotation to the ignition tube following alternate melting and cooling, a homogenous mixer of the compound and camphor can be obtained.
4. When the last crystal of the solid disappears, the temperature should be noted.

EXPERIMENT-6

AIM:- To standardize the given acid solution (like HCl) pH metrically.

THEORY:-

In pH metric titrations, when some alkali is added to an acid there will be an decrease in concentration of H^{+}ion and increase in pH of the solution.
pH is the negative logarithm of hydrogen ion or hydronium ion concentration.

$$
\mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right)
$$

In the beginning, the pH increases slowly but at the end point, the increase is very large due to rapid increase in the fraction of the H^{+}ion removed by the addition of constant volume of the alkali. After the end point, pH increases slowly. A plot of pH vs volume of alkali added will give the equivalence point.

CHEMICAL USED:-

1. Standard alkali or $\frac{N}{10} \mathrm{NaOH}$
2. HCl solution
3. A buffer solution of known $\mathrm{pH}(.05 \mathrm{M}$ potassium hydrogen phthalate, pH = 4)
4. Distilled water

APPARATUS USED:-

1. pH meter
2. Glass and calomel electrodes
3. Burette
4. Beaker

PROCEDURE:-

1. Wash the electrodes with distilled water.
2. Take 20 ml of given acid solution in a beaker and dip the electrodes in it.
3. Measure the pH of the solution using previously calibrated pH meter with a glass electrode.
4. Mix 0.5 ml of NaOH solution from a burette each time and measure the pH after stirring the solution.
5. Mix NaOH solution dropwise near the end point, and measure the pH after each mixing.
6. Repeat the experiment to take some more readings beyond the equivalent point.

OBSERVATION:-

Volume of given HCl taken in beaker $=20 \mathrm{ml}$
Normality of NaOH solution $=\frac{N}{20}$
Volume of NaOH used for complete neutralization or to get end point $=\mathrm{V} \mathrm{ml}$

CALCULATION:-

By ploting the pH vs volume of alkali added, find the equivalence point Using normality equation,

$$
\begin{gathered}
\mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~V}_{2} \\
(\mathrm{HCl}) \quad(\mathrm{NaOH}) \\
\mathrm{N}_{1} \times 20=\frac{N}{20} \times \mathrm{V}
\end{gathered}
$$

$\therefore \mathrm{N}_{1}$ is Normality of HCl solution $=\frac{V}{400}$

$$
\text { Strength of } \mathrm{HCl} \text { solution }=\text { Normality } \times \text { Eq. wt. }
$$

$$
=\frac{N}{400} \times 36.5=\times \mathrm{g} / \text { litre }
$$

RESULT:-

Strength of given HCl solution $=\mathrm{xg} /$ litre PRECAUTIONS:-

1. When electrodes not in use, should be placed in distilled water.
2. With buffer solution of known pH . pH meter should be calibrated.
3. After each a mixing solution should be stirred.
4. Near the end point, NaOH solution should be mixed dropwise.

EXPERIMENT - 7

AIM:- To determine the strength of given mono basic acid (like HCl) potentiometrically.
THEORY:-

Poteniometric method is applicable to wide range of titration, provided in indicator electrode is available an indicator electrode is the whose potential indicance the change in the concentration of ion to be titrated. The variation of potential of an electrode with the concentration of ion with which it is in equilibrium is used as an indicator in volumemetric analysis. It is not possible to determine the electrode potential separately, hence the indicator electrode is used in conjunction with a reference electrode, in which potential at one of the reference electrode remains constant during the course of titration e.g. saturated calomel electrode (SCE) while potential of other electrode depends on the activity of H^{+}ion in the solution. A solution of acid is titrated with a solution of an alkali, the following cell is setup in the acid solution.
$\mathrm{Ag}, \mathrm{AgCl} / 1 \mathrm{MHCl}| | \mathrm{KCl}$ aq.|| calomel electrode
The change of pH will be reflected in the change of cell potential. When a small volume of standard $\left(\frac{N}{10}\right) \mathrm{NaOH}$ is mixed to HCl , a little change in e.m.f. is produced in the beginning. After the end point, the fraction of the hydrogen ion removed by a constant volume of the standard alkali increases rapidly.

Plot the e.m.f. against volume of the alkali added.
By plotting graph between $\frac{\Delta E}{\Delta V}$ against the volume of alkali mixed, the sharp end point is obtained.

CHEMICAL USED:-

1. Approx 0.1 N HCl solution
2. 0.1 N NaOH solution
3. KCl salt bridge
4. Pure H_{2}

APPARATUS USED:-

1. Potentiometer
2. Glass electrode
3. Calomel electrode
4. Beaker
5. Stirrer
6. Burette

PROCEDURE:-

I. Set all the apparatus properly.
II. Take 20 ml of acid solution in a beaker and calomel electrode is dipped into the solution to saturate the solution mix a quinhydrone.
III. Connect two electrodes to a potentiometer.
IV. Immediately above the beaker clamp a burette with $\frac{N}{10} \mathrm{NaOH}$ solution.
V. Measure the e.m.f. of the cell.
VI. Mix 0.5 ml of NaOH solution from the burette and determine the e.m.f. of the cell after waiting for one minute.
VII. Mix another 0.5 ml of NaOH and measure e.m.f. of the solution.
VIII. Repeat the experiment similarly, after each addition 0.5 ml of NaOH .
IX. When a sudden jump in the e.m.f. is observed, stop mixing NaOH and find the approximate volume needed for reaching the end point.
X . By mixing 1 or 2 ml of alkali in initial steps, repeat the titration. By adding 1 or 2 drops of alkali at a time expected to involve the end point.
XI. Note down the e.m.f. after each addition.

OBSERVATION:-

Sr.No.	Volume of $\mathrm{NaOH}(\mathrm{ml})$	EMF (Volts)	$\Delta \mathrm{E}$ (Volts)	$\Delta \boldsymbol{V}$ (ml)	$\frac{\Delta \boldsymbol{E}}{\Delta \boldsymbol{V}}$	V (ml)
1.	$\mathrm{~V}_{1}$	E_{1}				
2.	V 2	E_{2}				
3.	$\mathrm{~V}_{3}$	E_{3}				
4.	$\mathrm{~V}_{4}$	E_{4}				
5.	$\mathrm{~V}_{5}$	E_{5}				
6.	-	-				
7.	-	-				
8.	-	-				

CALCULATION:-

Draw a graph between EMF along y-axis and volume of NaOH along x -axis. The inflexion point correspondes to the equivalence point. Then find the value of V corresponding to inflexion point.
If a clear equivalence point is not obtained then draw a graph between $\frac{\Delta E}{\Delta V}$ against volume of NaOH

By using normality equation, the normality of strength of HCl can be determined

$$
\begin{aligned}
& \mathrm{N}_{1} \mathrm{~V}_{1}=\mathrm{N}_{2} \mathrm{~N}_{2} \quad \mathrm{~N}_{1}=? \\
& \text { (acid) } \quad \text { (Alkali) }
\end{aligned}
$$

Strength $=\left(\mathrm{N}_{1} \times 36.5\right) \mathrm{g} /$ litre

Section - C (Organic)

EXPERIMENT-1

AIM:- To separate green leaf pigments by thin layer chromatography and determine their R_{f} values.

THEORY:-

In thin layer chromatography where the stationary phase is a polar adsorbent and the mobile phase can be a single solvent or combination of solvent. A thin layer of adsorbent usually silica gel or activated alumina on a smooth surface is used as a stationary phase and chromatogram is developed by upward capillary movement of the solvent through the thin layer of adsorbent.
In principle, the components will differ insolubility and in the strength of their adsorption to the adsorbent and some components will be carried farther up plate then others. When the solvent has reached the top of the plate, the plate is removed from the developing chamber, dried and separated components are visualized. If the compounds are coloured, visualization is straight forward. Various compound on the developed TLC plates are identify through their R_{f} values. R_{f} stands for Retention factor or Ratio of Fronts.

$$
\mathrm{R}_{\mathrm{f}}=\frac{\text { Distance travelled by the compound }}{\text { Distance travelled by solvent }}
$$

CHEMICAL USED:-

1. Chloroform
2. Acetone
3. Benzene
4. Silica gel
5. Spinach leaves

APPARATUS USED:-

1. Glass plates
2. Wide mouthed bottles with stoppers
3. Glass jars with lids
4. Tongs
5. Capillary tubes
6. Beaker

7. Filter paper

PROCEDURE:-

I. Slurry of adsorbent is prepared by mixing about 30 g of silica gel in small amount to 100 ml of chloroform in a wide mouth bottle with constant swirling motion, the bottles should be tightly stopperd.
Similarly, we can also prepare a slurry of alumina in alcohol.
II. By holding the two cleaned and dried glass plate together with tong, dipping them in the slurry of adsorbent and removing the plates quickly in this way, obtain a uniform coating of the slurry on one side of each plate. Do not dip the top and end of the plate now allow the slurry to drain and holding the top edges, separate the two plate and allow it to dry in air by placing these plate on a filter paper with slurry side upwards. These plates are known as chromatographic plates.
III. Prepare the 'extract of leaves' by dipping few crushed leaves of spinach in a little quantity of alcohol for 30 minutes in a beaker stirring with a glass rod the contents are filtered and the filtrate is taken as the 'extract of leaves'.
IV. In the center of the chromatographic plate a drop of he green leaves extract is applied with the help of a capillary tube. Allow the drop dry in air.
V. In chromatography jar place the glass plate in such a way that it does not touch the side of the jar.
VI. Into the chromatography jar lower the glass plate containing the developing solvent (alcohol and water in the ratio 1:1) care should be taken that the spot does not dip into the solvent and the glass strip hangs vertically straight. With the help of a lead cover the jar.
VII. Remove the slide from the jar, when the developing solvent rises on a certain suitable distance and dry it in air.
VIII. Mark the level of the liquid with a pencil.
IX. Mark the central points of each support.
X. The distance travelled by the spots and the developing agent to be measured.
XI. Calculate the R_{f} values of the spots corresponding to different components.

By using the relation

$$
\mathrm{R}_{\mathrm{f}}=\frac{\text { Distance travelled by the component }}{\text { Distance travelled by the solvent }}
$$

CALCULATION:-

Distance travelled by component $1=d_{1} m$
Distance travelled by component $2=d_{2} m$
Distance travelled by component $3=d_{3} \mathrm{~m}$
Distance travelled by developing liquid $=d_{4} \mathrm{~cm}$

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{f}} \text { value of component } 1=\frac{d_{1}}{d_{4}} \\
& \mathrm{R}_{\mathrm{f}} \text { value of component } 2=\frac{d_{2}}{d_{4}} \\
& \mathrm{R}_{\mathrm{f}} \text { value of component } 3=\frac{d_{3}}{d_{4}}
\end{aligned}
$$

PRECAUTIONS:-

I. The glass plate used must be thoroughly clean and dry.
II. Fine capillary tube should be used for applying a spot of solution.
III. The glass plate should be kept erect.
IV. During the experiment, keep the glass jar always covered and undisturbed.
V. The slurry bottle must be tightly Stoppard.
VI. The spots of the solution must not dip in the developing solvent.

EXPERIMENT - 2

AIM:- To separate a mixture of coloured organic compounds (fluorescein and methylene blue) by column chromatography.

THEORY:-

In column chromatography, the stationary phase, a solid adsorbent, is placed a vertical glass, according to the amount of material which needs to be loaded on to the column, the columns may vary in sizes of their diameter and lengths. A plug of cotton wool is inserted in the neck of the tube.

Adsorbents used commonly for column chromatography are silica gel and alumina. The mobile phase, a liquid solvent is added to the top and flows down through the column by either gravity or external pressure.

As the solution passes through the column different components gets adsorbed to different extents at different level producing bands is selected a solvent or eluent is added, as soon as the last portion of the solution and enters the column. It acts as a moving phase. The selected solvent dissolve out the different components from the different zones selectively and thus work out the different band in the form of fraction which are collected separately. To get the components in pure form, the eluent from each fraction is then distilled off.

CHEMICAL USED:-

1. Alumina $100-200$ mesh
2. Methylene blue
3. Sodium salt of fluorescein
4. Rectified spirit

APPARATUS USED:-

1. Chromatography column
2. Test tube
3. Beaker

PROCEDURE:-

1. Using rectified spirit prepare a slurry of $50-100 \mathrm{mg}$ of activated alumina and pour this slurry into the column. On the top of the adsorbent leave a space of $4-5 \mathrm{~cm}$ for addition of solvent.
2. Mix solvent to the top of the adservent. The solvent flows slowly down the column. At the top level monitor the solvent, it does not go below the top of the adsorbent.
3. As the solvent close through the alumina and its level reaches the bottom of the column, the processes of pre-elution is complete and the column is ready to load.
4. In about 5 ml of rectified spirit dissolve 5 mg of methylene blue and sodium salt of fluorescein, the sample is ready to be loaded in the column. Only a few drops of solvent use to load the sample into the column.
5. Add rectified spirit, when the sample is introduced in the column to develop the chromatogram. After some time, blue colour of methylene blue travels down the column while fluoresecin remains at the top.
6. Continue the process till whole of methylene blue has passed into the receiver placed below the column and the same becomes colourless.
7. Rectified spirit is placed by water has eluent solvent when fluorescein starts moving down the column. change the collection beaker and continue elution till whole of fluorescein is recovered.

PRECAUTIONS:-

1. To prevent the drying out of the column, the upper surface of the column always remains covered with the solvent throughout the experiment.
2. Eluents must be low boiling liquids show as to facilitate the quick removal from the fractions collected.

EXPERIMENT - 3

AIM:- To seprate a mixture of O - and p - nitrophenols by steam distillation.

THEORY:-

The process is use for purification of those substances from no-volatile impurities which themselves are steam volatile but insoluble in water at the same time.

For such a system, where to immiscible liquids are brough to gather which do not mix at all, each liquid behaves independent of the other and exerts a vapour pressure.

O-nitrophenol is steam volatile as it shows intra molecular hydrogen bonding and has a boiling point lower than p-nitrophenol which shows inter molecular hydrogen bonding. So they can be separated by steam distillation.

O-nitrophenol $\rightarrow \quad$ p-nitrophenol
(intramolecular H-Bonding) (intermolecular H-bonding)

CHEMICAL USED:-

1. Ortho and para nitrophenol
2. $2 \% \mathrm{HCl}$ solution
3. Powdered charcoal

APPARATUS USED:-

1. Round bottom flask
2. Sand bath
3. Filter paper
4. Buchner funnel
5. Condenser tube
6. Burner
7. Steam generator

PROCEDURE:-

1. Take the mixture of o-and p-nitrophenol in the round bottom flask.
2. While passing steam through it simultaneously, heat it on a sand bath, when ortho-nitrophenol passes over and para-isomer is left behind.
3. In ice cold water cool the distillate.
4. Filter at the pump and allow to drain.
5. Between folds of filter paper dry the compound and determine the melting point.
6. The removal of ortho-nitrophenol by steam distillation, cool the residue in the flask in ice for few minutes and filter.
7. For about five minute boil the crude para-nitropheno, with 2% solution of HCl with a little powdered charcoal.
8. Through a Buchner funnel filter the solution and allow to cool gradually when colourless needle like crystal of para-nitrophenol separate out.
9. Dry them by pressing between folds of filter paper and not its melting point.
10.When ortho-nitrophenol solidifies in the condenser tube, stop passing cold water through the condenser.

PRECAUTION:-

1. All the apparatus used in experiment should be clean and dry.
2. Set all the apparatus properly.
3. Follow all the steps carefully.
4. To avoid the condensation of water, the round bottom flask is being simultaneously heated on a sand bath.

EXPERIMENT - 4

AIM:- To prepare O-chlororobenzoic acid from anthranilic acid.

THEORY:-

First anthranilic acid is diazotized to give desired product of diazonium salt. In a diazonium salt, diazo group is replaced by halogen atom by treating the diazonium salt with cuprous halide in presence of HCl .

CHEMICAL REACTION:-
Anthranilic acid $\xrightarrow[0-5^{\circ} \mathrm{C}]{\mathrm{NaN}_{2} / \mathrm{HCl}}$ diazonium salt $\xrightarrow{\mathrm{Cu}_{2} \mathrm{Cl} / \mathrm{HCl}}$ o-Chlorobenzoic acid

CHEMICAL USED:-

1. Anthranilic acid $=6.0 \mathrm{~g}$
2. Sodium nitrite $=3.0 \mathrm{~g}$
3. Copper sulphate $=10 \mathrm{~g}$
4. Sodium chloride $=10 \mathrm{~g}$
5. Conc. $\mathrm{HCl}=40 \mathrm{ml}$
6. Copper turnings $=6.0 \mathrm{~g}$
7. Ice $=$ as needed

APPARATUS USED:-

1. Round bottom flask
2. Ice bath
3. Beaker
4. Burner
5. Iron stand
6. Droper
7. Glass rod
8. Filter paper etc.

PROCEDURE:-

1. Prepare a solution of cuprous chloride as follows :-

Dissolve 10 g of copper sulphate and 10 g of NaCl (sodium chloride) in 30 ml of distilled water taken in a round bottom glass. Boil the solution and add 30 ml conc. HCl and 6 g copper turnings. Hit the contants till a clear solution is obtained. Filter and full the filterate in an ice bath.
2. Take 6 g anthranilic acid and 10 ml conc. HCl in a beaker. Add about 40 ml distilled water and hit the contents to get a clear solution. Then, cool the solution to $0-5^{\circ} \mathrm{C}$ in an ice bath.
3. To the anthranilic acid solution, add a solution of 3 g of sodium nitrite prepared in 10 ml of distilled water dropwise. Taking care the temperature should remains below $5^{\circ} \mathrm{C}$.
4. Add the above diazonium salt solution in small instalments to the cold cuprous chloride solution prepared in the first step with constant stirring.
5. Allow the reaction mixture to stand for about half an hour at room temperature.
6. Filter the crude product and crystallize from boiling water containing a little amount alcohol.

OBSERVATION:-

I. Colour = white crystalline solid.
II. Yield $=5 \mathrm{~g}$
III. M.Pt. $=138^{\circ} \mathrm{C}$

PRECAUTIONS:-

1. The colour of cuprous chloride solution should be colourless.
2. During diazotization of anthranilic acid, the temperature should be kept below $5^{\circ} \mathrm{C}$.
3. To avoid the decomposition on standing, the diazonium salt solution should be added immediately to the cuprous chloride solution.

EXPERIMENT - 5

AIM:- To prepare p-Bromonaniline from p -Bromoacetanilide.
THEORY:-
p -Bromonaniline can be obtained by the hydrolysis of acetanilide with an alkali.

CHEMICAL REACTION:-

$$
\text { p-Bromoacetanilide }+\mathrm{H}_{2} \mathrm{O} \xrightarrow{\mathrm{KOH}} \text { p-Bromoaniline }+\mathrm{CH}_{3} \mathrm{COOH}
$$

CHEMICAL USED:-

1. P-Bromoacetanilide $=7.5 \mathrm{~g}$
2. Ethyl alcohol $=25-30 \mathrm{ml}$
3. Potassium hydroxide $=4.5 \mathrm{~g}$
4. Ice $=$ As needed

APPARATUS USED:-

1. Round bottom flask
2. A reflux water condenser
3. Beaker
4. Water bath
5. Glass rod
6. Iron stand
7. Burner

PROCEDURE:-

1. Take 7.5 g of p-bromoacetanilide \& 15 ml ethyl alcohol in a 100 ml round bottom flask fitted with a reflux water condenser. Heat the contents to get clear solution.
2. Mix a solution of 4.5 g KOH dissolved in 7.8 ml distilled water to this solution, boil the contents of the flask for about 30 minutes.
3. Transfer the contents of round bottom flask to a 250 ml beaker and add 50 ml of water. By heating on a water bath concentrate the solution to two - thirds of its volume.
4. In a beaker a containing $60-70 \mathrm{ml}$ ice cold water, cool and pour the contents with constant stirring, when an oily product separates out which soon solidifies.
5. Filter and crystallize the crude product from 50% ethyl alcohol to get white crystalline solid.

RESULT:-

I. Yield $=$ about 5 g
II. Colour = white crystalline solid
III. M.Pt. $=66^{\circ} \mathrm{C}$

PRECAUTIONS:-

p-Bromoaniline separates as an oily liquid which soon solidifies. In case does not solidify, scratch the sides of the beaker with a glass rod and add more ice.

EXPERIMENT - 6

AIM:- To prepare m-nitroaniline from m-dinitro benzene.

THEORY:-

m-nitroaniline can be obtained by reducing m-dinitrobenzene partially either with sodium polysulphide or with alcoholic solution of ammonium hydrogen sulphide.
CHEMICAL REACTION:-

$$
\begin{aligned}
& \text { m-dinitrobenzene }+\mathrm{Na}_{2} \mathrm{~S}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \text { m-Nitroaniline }+\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\
& \text { m-dinitrobenzene }+3 \mathrm{NH}_{4} \mathrm{SH} \rightarrow \mathrm{~m} \text {-Nitroaniline }+3 \mathrm{~S}+2 \mathrm{H}_{2} \mathrm{O}+3 \mathrm{NH}_{3}
\end{aligned}
$$

CHEMICAL USED:-

1. m -Dinitrobenzene $=7.5 \mathrm{~g}$
2. Sodium sulphide $=12.0 \mathrm{~g}$
3. Sulphur powder $=4.5 \mathrm{~g}$
4. Ice $=$ as needed

APPARATUS USED:-

1. Separating funnel
2. Beaker
3. Glass rod
4. Burner
5. Iron stand

PROCEDURE:-

I. First prepare polysulphide solution is formed as follows:

Dissolve 12 g sodium sulphide in 50 ml distilled water. Mix 4.5 g of sulphur powder to it and heat the contents gently till a clear solution is obtained.
II. Now take 7.5 g of m-dinitrobenzene and 150 ml of water in 400 ml beaker. Heat to boil stir the solution.
III. Transfer the sodium poly sulphide solutions prepared in first step to a separating funnel and clamp it over the beaker containing m-dinitro benzene solution.
IV. Mix sodium poly sulphide solution with constrant stirring to the boiling mixer in small instalments so that mixing is complete in about 10 minutes boil the contains for 20 minutes more.
V. In the beaker, cool and add crushed ice when crude m-nitroaniline separates out.
VI. Filter crude product and wash with cold water.
VII. Now transfer the crude product to a beaker containing in about 50 ml water and 12 ml conc. HCl . Boil for 15 minutes when m-nitroaniline passes into solution as its hydrochloride, leaving behind sulphur. Filter the solution.
VIII. To the filerate mix conc. Aqueous ammonia when m-nitroaniline separates out.
IX. Filter and recrystallise from volume water.

RESULT:-

I. Yield $=$ about 5 g
II. Colour = Bright yellow needle like crystals
III. M.Pt. $=114^{\circ} \mathrm{C}$

EXPERIMENT -7

AIM:- To prepare S-Benzyl - iso - thiouronium chloride from thiourea.

THEORY:-

By treating benzyl chloride with thiourea in alcoholic solutions, S-Benzyl - iso thiouronium chloride can be obtained.
CHEMICAL REACTION:-
Benzyl chloride + Thiourea \rightarrow S-Benzyl-iso - thiouronium chloride

CHEMICAL USED:-

1. Benzyl chloride $=4 \mathrm{~g}$
2. Thiourea $=2.5 \mathrm{~g}$
3. Reactified spirit $=5 \mathrm{ml}$

PROCEDURE:-

1. Take 4 g benzyl chloride, 2.5 g thiourea and 5 ml rectified spirit in 100 ml round bottom flask which is fitted with a reflux condenser.
2. Warm the contents on a water bath. An exothermic reaction occurs immediately and whole of thiourea passes into the solution.
3. Reflex the resulting solution of round bottom flask for about 30 minutes and cool in ice cold water when white crystal of S-Benzyl is thiouronium chloride separate out.
4. Filter under suction and allow the crystals to dry in air.
5. Recrystallise the crude product from 0.2 N HCl .

RESULT:-

I. Yield $=5 \mathrm{~g}$ (about)
II. Colour $=$ white crystal
III. M.Pt. $=175^{\circ} \mathrm{C}$

EXPERIMENT -7

AIM:- To prepare S-Benzyl - iso - thiouronium chloride from thiourea.

THEORY:-

By treating benzyl chloride with thiourea in alcoholic solutions, S-Benzyl - iso thiouronium chloride can be obtained.
CHEMICAL REACTION:-
Benzyl chloride + Thiourea \rightarrow S-Benzyl - iso - thiouronium chloride

CHEMICAL USED:-

1. Benzyl chloride $=4 \mathrm{~g}$
2. Thiourea $=2.5 \mathrm{~g}$
3. Reactified spirit $=5 \mathrm{ml}$

PROCEDURE:-

1. Take 4 g benzyl chloride, 2.5 g thiourea and 5 ml rectified spirit in 100 ml round bottom flask which is fitted with a reflux condenser.
2. Warm the contents on a water bath. An exothermic reaction occurs immediately and whole of thiourea passes into the solution.
3. Reflex the resulting solution of round bottom flask for about 30 minutes and cool in ice cold water when white crystal of S-Benzyl is thiouronium chloride separate out.
4. Filter under suction and allow the crystals to dry in air.
5. Recrystallise the crude product from 0.2 N HCl .

RESULT:-
I. Yield $=5 \mathrm{~g}$ (about)
II. Colour = white crystal
III. M.Pt. $=175^{\circ} \mathrm{C}$

VERIFIED

[^0]: Test for Sulphite ion $\left(\mathrm{SO}_{3}{ }^{2-}\right)$:-

